Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96529
標題: 應用漸滲雜交導入黑皮性狀於嘉義竹崎雞
Introgression of black skin trait to Chiayi Ju-Chi chicken
作者: 邱馨玉
Shin-Yu Chiou
關鍵字: 嘉義竹崎雞
漸滲雜交
黑皮性狀
纖維黑色素基因
Chiayi Ju-Chi chicken
introgression
black skin trait
Fibromelanosis
引用: 李柏年。1952。臺灣之家禽,臺灣之畜產資源。臺灣銀行經濟研究室。台北市。 李淵百。1995。台灣農家要覽。畜牧篇:207~209。財團法人豐年社。台北市。 李顯卿。1983。台灣的養雞事業。台灣的肉雞飼養業概況:130~132。台北市。 祁偉廉、蔡永和。2006。鳥羽:台灣野鳥羽毛圖鑑。商周出版。台北市。 徐桂芳、陳寬維。2003。中國家禽地方品種資源圖譜。中國農業出版社。北京。 康裕鑫、康恭浩。1992。烏骨雞飼養技術。 中國農業出版社。北京。 陳志峰。2006。雞隻外貌的遺傳多樣性。國立編譯館與藝軒圖書出版社。台北市。 黃子謙。1983。台灣的養雞事業。台灣的養雞事業概況:106~114。台北市。 鍾秀枝。2004。畜產生物品種資源。雞:41~47。台南市。 方建仁。2010。簡單籠飼豐富化對地方雞種日間作息行為之影響。國立中興大學碩士論文。台中市。 何玉珍。1999。遺傳、胡麻粕與α-MSH對烏骨雞外表皮膚黑度之影響。國立中興大學碩士論文。台中市。 呂理淵。2000。台灣土雞、北京油雞、商用烏骨雞與絲羽烏骨雞之生長、外貿、血液與免疫性狀之調查研究。國立中興大學碩士論文。台中市。 李淵百、黃暉煌。1988。臺灣地方雞育種。中畜會誌 17(3-4):1~9。 周佩璇。2008。性聯遺傳矮小基因與限飼對於台灣紅羽土雞生長性能與棲息行為之影響。國立中興大學碩士論文。台中市。 林煥庭。2015。愛情鳥羽毛色澤及黑色素生成相關基因探討。國立中興大學碩士論文。台中市。 范孟興。 2013。亞洲家雞族群以微衛星基礎分析遺傳多樣性和保護優先。國立中興大學碩士論文。台中市。 張凱煌。2002。地方雞種之生長、免疫、繁殖性狀與耐熱能力之調查研究。國立中興大學碩士論文。台中市。 陳志峰、李淵百、范揚廣、黃三元、黃暉煌。1994。台灣地方雞種原保存。中畜會誌 23(3):339~346。 黃誠鑑、李淵百、黃暉煌。1985。台灣商用地方雞重要數量經濟性狀遺傳率與遺傳相關。 國立中興大學碩士論文。台中市。 鄭佩儀。2008。絲羽烏骨雞外貌特徵之遺傳研究。國立中興大學碩士論文。台中市。 Anderson, E. 1949. Introgressive hybridization. John Wiley And Sons, Inc., New York. Bateson, W., and E. R. Saunders. 1902. The facts of heredity in the light of Mendel's discovery. Reports to the Evolution Committee of the Royal Society. 1:125-160. Berima, M. e. A., I. A. Yousif, H. Eding, S. Weigend, and H. H. Musa. 2013. Population structure and genetic diversity of Sudanese native chickens. Afr. J. Biotechnol. 12:6424-6431. Boer, E. F., H. F. Van Hollebeke, and M. D. Shapiro. 2017. Genomic determinants of epidermal appendage patterning and structure in domestic birds. Dev. Biol. Accessed Mar. https://doi.org/10.1016/j.ydbio.2017.03.022. Bourdon, R. M., and R. M. Bourbon. 1997. Understanding animal breeding. Prentice Hall Englewood Cliffs, NJ. Chang, C.-S., C. Chen, C. Berthouly‐Salazar, O. Chazara, Y. Lee, C. Chang, K. Chang, B. Bed'Hom, and M. Tixier‐Boichard. 2012. A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan. Anim. Genet. 43:172-182. Chen, C. F., Y. H. Chen, M. Tixier-Boichard, P. Y. Cheng, C. S. Chang, P. C. Tang, and Y. P. Lee. 2009. Effects of the chicken sex-linked dwarf gene on growth and muscle development. Asian-australas. J. Anim. Sci. 22:937-942. Cichorek, M., M. Wachulska, A. Stasiewicz, and A. Tyminska. 2013. Skin melanocytes: biology and development. Postepy Dermatol Alergol. 30:30-41. Cieslak, M., M. Reissmann, M. Hofreiter, and A. Ludwig. 2011. Colours of domestication. Biol. Rev. 86:885-899. Davila, S. G., M. G. Gil, P. Resino-Talavan, and J. L. Campo. 2014. Association between polymorphism in the melanocortin 1 receptor gene and E locus plumage color phenotype. Poult. Sci. 93:1089-1096. Dekkers, J. C. 2004. Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. J. Anim. Sci. 82:E313-E328. Dorshorst, B., A. M. Molin, C. J. Rubin, A. M. Johansson, L. Stromstedt, M. H. Pham, C. F. Chen, F. Hallbook, C. Ashwell, and L. Andersson. 2011. A complex genomic rearrangement involving the Endothelin 3 locus causes dermal hyperpigmentation in the chicken. PloS Genet. 7:13. Dorshorst, B., R. Okimoto, and C. Ashwell. 2010. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. J. Hered. 101:339-350. Dunn, L., and M. A. Jull. 1927. On the inheritance of some characters op the silky fowl. J. Genet. 19:27-63. FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture. Barbara Rischkowsky and Dafydd Pilling, ed., Food and Agriculture Organization of the United Nations (FAO), Rome. FAO. 2009. Threats to animal genetic resources –Their relevance, importance and opportunities to decrease their impact. Irene Hoffmann, ed., Animal Production Service, Animal Production and Health Division, Agriculture and Consumer Protection Department of FAO, Rome. Faraco, C. D., S. A. S. Vaz, M. V. D. Pastor, and C. A. Erickson. 2001. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev. Dynam. 220:212-225. Faustin, V., A. A. Adégbidi, S. T. Garnett, D. O. Koudandé, V. Agbo, and K. K. Zander. 2010. Peace, health or fortune?: Preferences for chicken traits in rural Benin. Ecol. Econ. 69:1848-1857. Galvan, I., and F. Solano. 2016. Bird integumentary melanins: biosynthesis, forms, function and evolution. Int. J. Mol. Sci. 17:21. Geospiza. 2009. FinchTV 1.4.0., Inc. Seattle, WA, USA. Hall, T. A. 2005. BioEdit version 7.0.0. Department of Microbiology, North Carolina State University. Han, R. L., P. K. Yang, Y. D. Tian, D. D. Wang, Z. X. Zhang, L. L. Wang, Z. J. Li, R. R. Jiang, and X. T. Kang. 2014. Identification and functional characterization of copy number variations in diverse chicken breeds. BMC Genomics. 15:934. Harrison, R. G. 1993. Hybrid zones and the evolutionary process. Oxford University Press on Demand. UK. Hoque, M. R., S. Jin, K. N. Heo, B. S. Kang, C. Jo, and J. H. Lee. 2013. Investigation of MC1R SNPs and their relationships with plumage colors in Korean native chicken. Asian-Australas J. Anim. Sci. 26:625-629. Huang, Y. Q., X. M. Deng, Z. Q. Du, X. Qiu, X. Du, W. Chen, M. Morisson, S. Leroux, F. A. Ponce de Leon, Y. Da, and N. Li. 2006. Single nucleotide polymorphisms in the chicken Lmbr1 gene are associated with chicken polydactyly. Gene. 374:10-18. Imsland, F., C. Feng, H. Boije, B. Bed'hom, V. Fillon, B. Dorshorst, C. J. Rubin, R. Liu, Y. Gao, X. Gu, Y. Wang, D. Gourichon, M. C. Zody, W. Zecchin, A. Vieaud, M. Tixier-Boichard, X. Hu, F. Hallbook, N. Li, and L. Andersson. 2012. The Rose-comb mutation in chickens constitutes a structural rearrangement causing both altered comb morphology and defective sperm motility. PLoS Genet. 8:e1002775. SAS Institute. 2003. SAS/STAT user's guide, version 9.1. SAS Institute, Cary, NC. Johansson, A. M., and R. M. Nelson. 2015. Characterization of genetic diversity and gene mapping in two Swedish local chicken breeds. Front. Genet. 6:44. Kerje, S., J. Lind, K. Schütz, P. Jensen, and L. Andersson. 2003. Melanocortin 1‐receptor (MC1R) mutations are associated with plumage colour in chicken. Anim. Genet. 34:241-248. Leroy, G., B. B. Kayang, I. A. Youssao, C. V. Yapi-Gnaoré, R. Osei-Amponsah, E. L. N'Goran, J.-C. Fotsa, K. Benabdeljelil, B. Bed'hom, and M. Tixier-Boichard. 2012. Gene diversity, agroecological structure and introgression patterns among village chicken populations across North, West and Central Africa. BMC genetics. 13:34. Lukanov, H., and A. Genchev. 2013. Fibromelanosis in domestic chickens. Agricultural Science and Technology. 5:239-246. McGraw, K. J. 2006. Mechanics of uncommon colors: pterins, porphyrins, and psittacofulvins. G.E. Hill, K.J. McGraw, eds., Bird Coloration: Mechanisms and Measurements, Harvard University Press, UK. 1:354-398. Ming, T., F. Suyun, W. Yanqiang, G. Xiaorong, F. Chungang, H. Rui, H. Xiaoxiang, and L. Ning. 2014. Inverted duplication including Endothelin 3 closely related to dermal hyperpigmentation in Silkie chickens. Frontiers of Agricultural Science and Engineering. 1:121-129. Mundy, N. I. 2005. A window on the genetics of evolution: MC1R and plumage colouration in birds. Proc. Biol. Sci. 272:1633-1640. Nozaki, A., and T. Makita. 1998. The surface color measurement of major tissues of silky fowls and white leghorns. J. Vet. Med. Sci. 60:489-493. Reedy, M. V., C. D. Faraco, and C. A. Erickson. 1998. Specification and migration of melanoblasts at the vagal level and in hyperpigmented Silkie chickens. Dev. Dyn. 213:476-485. Rothschild, M., C. Jacobson, D. Vaske, C. Tuggle, L. Wang, T. Short, G. Eckardt, S. Sasaki, A. Vincent, and D. McLaren. 1996. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Natl. Acad. Sci. 93:201-205. Roulin, A., and A. L. Ducrest. 2013. Genetics of colouration in birds. Semin. Cell Dev. Biol. 24:594-608. Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496-2497. Ruane, J., and A. Sonnino. 2007. Marker-assisted selection as a tool for genetic improvement of crops, livestock, forestry and fish in developing countries: an overview of the issues. Pages 3-13 in Marker-assisted Selection-Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish. Guimaraes, E. P., Ruane, J., Scherf, B. D., Sonnino, A. and Dargie, J. D, ed., Food and Agriculture Organization of the United Nations (FAO), Rome. FAO. 2015. The second report on the state of the world's animal genetic resources for food and agriculture. Scherf, B. D. and D. Pilling, ed. FAO Commission on Genetic Resources for Food and Agriculture Assessments. Rome (available at http://www.fao.org/3/a-i4787e/index.html). Shinomiya, A., Y. Kayashima, K. Kinoshita, M. Mizutani, T. Namikawa, Y. Matsuda, and T. Akiyama. 2012. Gene duplication of Endothelin 3 is closely correlated with the hyperpigmentation of the internal organs (fibromelanosis) in Silky chickens. Genetics. 190:627-536. Somes Jr, R. 1990. Mutations and major variants of muscles and skeleton in chickens. Pages 169-208 In Poultry Breeding and Genetics. R. D. Crawford, ed. Elsevier, Amsterdam, Netherlands. Somes Jr, R. 1991. Identifying the ptilopody (feathered shank) loci of the chicken. J. Hered. 83:230-234. Stromberg, L. 1996. Poltry of The World. Silvio Mattacchione and Co., Ontario, Canada. Sun, Y., R. Liu, G. Zhao, M. Zheng, Y. Sun, X. Yu, P. Li, and J. Wen. 2015. Genome-wide linkage analysis identifies loci for physical appearance traits in chickens. G3: Genes Genome Genet. 5: 2037-2041. Tohidi, R., I. Idris, J. Malar Panandam, and M. Hair Bejo. 2013. The effects of polymorphisms in 7 candidate genes on resistance to Salmonella enteritidis in native chickens. Poult. Sci. 92:900-909. Videira, I. F. d. S., D. F. L. Moura, and S. Magina. 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 88:76-83. Viitala, S. M., N. F. Schulman, D.-J. de Koning, K. Elo, R. Kinos, A. Virta, J. Virta, A. Mäki-Tanila, and J. Vilkki. 2003. Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. J. Dairy Sci. 86:1828-1836. Wang, Y., Y. Gao, F. Imsland, X. Gu, C. Feng, R. Liu, C. Song, M. Tixier-Boichard, D. Gourichon, Q. Li, K. Chen, H. Li, L. Andersson, X. Hu, and N. Li. 2012. The crest phenotype in chicken is associated with ectopic expression of HOXC8 in cranial skin. PLoS One. 7:e34012. Warren, D. 1928. Inheritance of earlobe color in poultry. Genetics. 13:470. Zhang, Z., C. Nie, Y. Jia, R. Jiang, H. Xia, X. Lv, Y. Chen, J. Li, X. Li, and Z. Ning. 2016. Parallel evolution of polydactyly traits in Chinese and European chickens. PloS One. 11:e0149010.
摘要: 種原保育的重要性在於維持物種遺傳多樣性與生物的永續利用。隨環境的改變,雞種在適應當地生態、人文環境後,演變出適應環境或不同外觀等變異。國立中興大學自民國71年開始進行台灣土雞的保種工作,將各地的土雞進行活體保種,其中嘉義竹崎土雞最初蒐集時有黑色與白色皮膚,在保種世代間流失黑皮性狀。本試驗主要目的是將黑皮性狀以漸滲雜交的方式導入竹崎雞。試驗一,分析黑皮雞隻與烏骨雞的纖維黑色素基因(Fibromelanosis, Fm),結果Fm基因皆有相同的結構變異。雞隻的黑皮性狀受到Fm基因的調控,因此試驗二,利用漸滲雜交方法將烏骨雞之Fm基因滲入竹崎雞,第一世代以竹崎公雞與烏骨母雞雜交,子代公雞與竹崎母雞持續回交至第四子代並進行黑皮性狀的選拔,比較黑皮竹崎雞、原竹崎雞與烏骨雞之生長性能,結果顯示黑皮竹崎雞體型較原竹崎雞輕小。亦比較黑皮竹崎雞與原竹崎雞的遺傳變異,分析第一型黑素皮質素受體(Melanocortin 1-receptor, MC1R)基因的單倍型,結果顯示黑皮竹崎雞和原竹崎雞的H1單倍型頻率沒有變化。本試驗利用漸滲雜交育種還原竹崎雞的皮膚顏色多樣性,並利用分子輔助固定黑皮性狀,唯黑皮竹崎雞公雞與母雞之體重較原竹崎雞輕、骨架較小。黑皮竹崎雞可作為儲存遺傳資源的基因庫,此竹崎雞種原在未來作為育種改良的種禽。
Conservation of the livestock is important to sustainable use for animal genetic diversity and biodiversity. Along with environment changing, chicken had some variation to adapt the local ecosystems and humanity. Such as different phenotype, structure, physiology and so on. National Chung Hsing University have been doing conservation of the Taiwan local chicken breeds since 1982. One of them is Chaiyi Ju-Chi, which has black or white skin in the beginning, but the black skin trait had disappeared since the conservation period. The main purpose of this study is to insert black skin trait into Ju-Chi via introgression. The first experiment analyzed the Fibromelanosis(Fm) of silky and some other black skin chickens, it showed the genes are very similar mutation. The black skin trait is controlled by Fm gene, therefore, the second experiment is to bring the Fm gene of silky into Ju-Chi via introgression. The first generation is crossbreed by Ju-Chi cocks and silky hens. The male offspring of the first generation are backcrossed with Ju-Chi hens till the fourth generation, then start the selection of black skin trait. The growth performance of Ju-Chi black, original Ju-Chi and silky were compared, it showed that the body size of Ju-Chi black is smaller than Ju-Chi. The genetic variation of Melanocortin 1-receptor(MC1R)gene haploid between Ju-Chi black and original Ju-Chi were also compared. Analyzing of H1 haploid frequence shows Ju-Chi black are no significant difference by original Ju-Chi. This study utilized introgression breeding to recover the diversity of skin color in Ju-Chi, and use marker assisted selection to select black skin trait. However, the weight and body size of Ju-Chi black are smaller than original Ju-Chi. Ju-Chi black can be regard as genetic resources in the gene pool and make use of breeder for improved breeding.
URI: http://hdl.handle.net/11455/96529
文章公開時間: 2020-08-14
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.