Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96534
標題: 接種好氣性微生物於不同調整材之禽畜糞堆肥之影響
Effects of inoculation aerobic microorganism on different bulking agents animal manure composts
作者: 李佳穎
Chia-Ying Lee
關鍵字: 禽畜廢棄物
堆肥
好氣性微生物
Animal manure
Compost
Aerobic microorganisms
引用: 中華民國乳業協會。2008。禽畜糞堆製作及肥施用手冊。台北市。 中華民國行政院環境保護署。2015。廚餘回收再利用操作管理參考資料。 吳正宗。2001。鹽害土壤的診斷與改良。興大農業。36: 19-23。 吳宣親。2016。篩選好氣性微生物於禽畜糞堆肥之應用。國立中興大學動物科學系所碩士論文。 李永文。2003。好氣式堆肥化處理之硝化菌分離與類緣分析。國立中興大學獸醫微生物學研究所碩士論文。 李翊合、林純卉、潘漢偉。2006。廚餘堆肥臭味檢測與防治技術開發子計畫四-廚餘堆肥場臭味防治技術建立(環保署/國科會空污防制科研合作計畫NSC 94-EPA-Z-157-001)。中華民國行政院環境保護署。 李秉璋。2013。農業廢棄物資源化趨勢簡析。台灣經濟研究院生物科技產業研究中心。線上檢索日期:2013/05/24。網址:http://agbio.coa.gov.tw/information_detail.s px?dno=41698&ito=30。 林鴻淇。1994。化學肥料。農藥世界特別報導。第134期10月。 林晉卿 、黃瑞彰、林經偉。2002。堆肥品質及其應用於介質之調製。台南區農業專訊。40: 6-11。 林毓雯、張庚鵬、黃維庭。2005。有機質肥料之合理化施用。有機質肥料之合理化施用。267-278。 胡南輝。2004。有機質肥料之認識及其施用技術。台東區農業專訊。50: 14-15。 凌麗美。2004。都市廚餘清理最適化之研究-以高雄市為例。國立高雄第一科技大學環境與安全衛生工程系碩士論文。 徐智、張隴利、張發寶、梁麗娜、李季。2009。接種内外源微生物菌劑對堆肥效果的影響。中國環境科學。29: 856-860。 崔砢。2009。堆肥技術與品質對土壤管理的影響。土壤品質管理與作物反應研討會。國立嘉義大學。 張明暉、簡宣裕、劉禎祺。2005。有機質肥料介紹。合理化施肥專刊。121: 255-266。 張騰維。2011。有機資材製作。線上檢索日期:2017/12/05。網址: http://www.mdu.edu.tw/~dpa/doc/Microsoft%20Word%20-%20%E6%9C%89%E6%A9%9F%E8%B3%87%E6%9D%90%E8%A3%BD%E4%BD%9C_%E5%BC%B5%E9%A8%B0%E7%B6%AD%20%E6%8A%80%E5%A3%AB.pdf。 陳仁炫。1999。禽畜糞堆肥的特性及其應用。88年度全省禽畜糞堆肥場。堆肥成品分析試驗及處理技術手冊。15-22。 陳仁炫。2008。禽畜糞堆肥的製作及使用要領。第五屆畜牧污染防治技術研討會論文集。47-58。 陳俊位。2010。木黴菌在農業上之應用。臺中區農業改良場九十九年專題討論專集特刊。105: 67-72。 游勝傑。2009。廢污水處理硝化菌鑑定漫談。環保簡訊第5期。線上檢索日期:2009/12/25。網址:http://setsg.ev.ncu.edu.tw/newsletter/epnews5-3-1.html。 楊秋忠。2003。有機質肥料的功效及應用要領。國立中興大學土壤環境科學系。 楊秋忠、趙震慶、沈佛亭。2012。微生物肥料應用手冊。國立中興大學土壤環境科學系。 賴鴻裕、劉程煒和陳柏青。2011。農業上的氮。科學發展。176: 40-45。 簡宣裕、莊作權。1997。廢棄香菇木屑堆肥研製及對小白菜之肥效。中華農業研究。46: 70-81。 簡道南。2003。堆肥的製作原理。台肥月刊。四十四卷第六期。  羅朝村、黃秀華。2009。木黴菌、 病原菌與作物的三角關係。科學發展。443: 34-41。 羅致逑。2015。堆肥中人畜共通致病菌之管理簡介。農政與農情。273: 98-102。 Abdel-Rahman, M. A., M. N. El-Din, B. M. Refaat, E. H. Abdel-Shakour, E. E. D. Ewais and H. M. A. Alrefaey. 2016. Biotechnological application of thermotolerant cellulose-decomposing bacteria in composting of rice straw. Ann. Agric. Sci. 61: 135-143. Barrington, S., D. Choiniere, M. Trigui and W. Knight. 2002. Effect of carbon source on compost nitrogen and carbon losses. Bioresour. Technol. 83: 189-194. Barrena, R., E. Pagans, G. Faltys and A. Sa´nchez. 2006. Effect of inoculation dosing on the composting of source-selected organic fraction of municipal solid wastes. J. Chem. Technol. Biotechnol. 81: 420-425. Bernal, M. P., J. A. Alburquerque and R. Moral. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100: 5444-5453. Brunetti, G., K. Farrag, P. Soler-Rovira, M. Ferrara, F. Nigro and N. Senesi. 2012. The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae species from contaminated soils in the Apulia region. Geoderma. 170: 322-330. Cheng, Q., S. Guo, W. Ai, Y. Tang, and L. Qin. 2013. A straw-soil co-composting and evaluation for plant substrate in BLSS. Adv. Space Res. 51: 483-491. Das, K. and H. M. Keener. 1997. Moisture effect on compaction and permeability in composts. J. Environ. Eng. 123: 275-281. Davis, J. G. and P. Kendall. 2005. Preventing E. coli from garden to plate. Colorado State University Extension. No. 9.369. Eklind, Y. and H. Kirchmann. 2000. Composting and storage of organic household waste with different litter amendments. II: nitrogen turnover and losses. Bioresour. Technol. 74: 125-133. Epstein, E. 1997. The Science of Composting. 487. Lancaster, Pennsylvania, USA: Technomic Publishing Company. Fialho, L. L., W. T. L. da Silva, D. Milori, M. L. Simoes and L. Martin-Neto. 2010. Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods. Bioresour. Technol. 101: 1927-1934 Fukumoto, Y. and K. Inubushi. 2009. Effect of nitrite accumulation on nitrous oxide emission and total nitrogen loss during swine manure composting. Soil Sci. Plant Nutr. 55: 428-434. Gao, M., B. Li, A. Yub, F. Liang, L. Yang and Y. Sun. 2010. The effect of aeration rate on forced-aeration composting of chicken manure and sawdust. Bioresour. Technol. 101: 1899-1903. Gao, M., F. Liang, A. Yu, B. Li and L. Yang. 2010. Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere. 78: 614-619. Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. Gilbert, E. J., D. S. Riggle and F. D. Holland. 2001. Large scale composting: a practical manual for the UK. Wellingborough: Composting Association. Golueke, C. G. 1977. Biological reclamation of organic wastes. USA: Rodale Press, Emmans, PA. Goyal, S., D. K. Dhull and K. K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity Bioresour. Technol. 96: 1584-1591. Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126: 131-138. Guo, R., G. Li, T. Jiang, F. Schuchardt, T. Chen, Y. Zhao and Y. Shen. 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 112: 171-178. Gupta, V. G., M. Schmoll, Herrera-Estrella A., R. Upadhyay, I. Druzhinina and M. Tuoh. 2014. Biotechnology and Biology of Trichoderma. Chapter. 32: 429-453. He, Y., Y. Inamori, M. Mizuochi, H. Kong, N. Iwami and T. Sun. 2001. Nitrous oxide emissions from aerated composting of organic waste. Environ. Sci. Technol. 35: 2347-2351. Hu, Z. H., Y. L. Liu, G. W. Chen, X. Y. Gui, T. H. Chen and X. M. Zhan. 2011. Characterization of organic matter degradation during composting of manure-straw mixtures spiked with tetracyclines Bioresour. Technol. 102: 7329-7334.   Huang, G. F., J. W. C. Wong, Q. T. Wu and B. B. Nagar. 2004. Effect of C/N on composting of pig manure with sawdust. Waste Manage. 24: 805-813. Iqbal, M. K., T. Shafiq and K. Ahmed. 2010. Characterization of bulking agents and its effects on physical properties of compost. Bioresour. Technol. 101: 1913-1919. Jarvis, A., C. Sundberg, S. Milenkovski, M. Pell, S. Smars, P. E. Lindgren and S. Hallin. 2009. Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3 and N2O in a compost reactor treating organic household waste. J. Appl. Microbiol.106: 1502-1511. Jiang, J., X. Liu, Y. Huang and H. Huang. 2015. Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. Waste Manage. 39: 78-85. Kitpreechavanich, V., T. Maneeboon, Y. Kayano and K. Sakai. 2008. Comparative characterization of L-lactic acid producing thermotolerant Rhizopus Fungi. J. Biosci. Bioeng. 106: 541-546. Ko, H. J., K. Y. Kim, H. T. Kim, C. N. Kim and M. Umeda. 2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage. 28: 813-820. Konneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury and D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. Leconte, M. C., M. J. Mazzarino, P. Satti, M. C. Iglesias and F. Laos. 2009. Co-composting rice hulls and/or sawdust with Layer manure in NE Argentina. Waste Manage. 29: 2446-2453. Liang, Y., J. J. Leonard, J. J. Feddes and W. B. McGill. 2006. Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresour. Technol. 97: 748-761. Liu, J., X. H. Xu, H. T. Li and Y. Xu. 2011. Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost. Biomass Bioenerg. 35: 3433-3439. Lopez-Real, J. and M. Baptista .1996. A preliminary comparative study of three manure composting systems and their influence on process parameters and methane emissions. Compost Sci. Util. 4: 71-82. Lynch, N. J. and R. S. Cherry. 1996. Winter composting using the passively aerated windrow system. Compost Sci. Util. 4: 44-52. Maeda, K., D. Hanajima, S. Toyoda, N. Yoshida, R. Morioka1 and T. Osada. 2011. Microbiology of nitrogen cycle in animal manure compost. Microb. Biotechnol. 4: 700-709. Maeda, K., S. Toyoda, R. Shimojima, T. Osada, D. Hanajima, R. Morioka and N. Yoshida. 2010. Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterial ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 76: 1555-1562. Martins, O. and T. Dewes. 1992. Loss of nitrogenous compounds during composting of animal wastes. Bioresour. Technol. 42: 103-111. McKenney, P. T., A. Driks and P. Eichenberger. 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11: 33-44. Mehta, C. M., U. Palni, I. H. Franke-Whittle and A. K. Sharma. 2014. Compost: Its role, mechanism and impact on reducing soil-borne plant Diseases. Waste Manage. 34: 607-622. Meng, L., W. Li, S. Zhang, C. Wu, W. Jiang and C. Sha. 2016. Effect of different extra carbon sources on nitrogen loss control andthe change of bacterial populations in sewage sludge composting. Ecol. Eng. 94: 238-243. Miller, F. C. 1992. Composting as a process based on the control of ecologically selective factors. In: Metting, F.B., Jr. (Ed.), Soil Microbial Ecology, Applications in Agricultural and Environmental Management. 515-544. New York, USA: Marcel Dekker,Inc. Mohamad Zainuddin, N. A. I. and A. Faridah. 2008. Disease suppression in Ganoderma treated with Trichoderma harzianum. Plant Protect. Sci. 44: 101-107. Oviedo-Ocaña, E. R., P. Torres-Lozada, L. F. Marmolejo-Rebellon, L. V. Hoyos, S. Gonzales, R. Barrena, D. Komilis and A. Sanchez. 2015. Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices.Waste Manage. 44: 63-71. Parradoa, J., B. Rodriguez Morgadoa, M. Tejada, T. Hernandezc and C. Garcia. 2014. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enzyme Microb. Technol. 57: 1-7. Rebollido, R., J. Martinez, Y. Aguilera, K. Melchor, I. Koerner and R. Stegmann. 2008. Microbial populations during composting process of organic fraction of municipal solid waste. Appl. Ecol. Environ. Res. 6: 61-67. Sánchez-Monedero, M. A., A. Roig, C. Paredes and M. P. Bernal. 2001. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. 78: 301-308. Sarkar, S., R. Banerjee, S. Chanda, P. Das, S. Ganguly and S. Pal. 2010. Effectiveness of inoculation with isolated Geobacillus strains in the thermophilic stage of vegetable waste composting. Bioresour. Technol. 101: 2892-2895. Siddiquee, S., S. N. Shafawati and L. Naher. 2017. Effective composting of empty fruit bunches using potential Trichoderma strains. Biotechnol. Rep. 13: 1-7. Soobhany, N., R. Mohee and V. K. Garg. 2017. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review. Waste Manage. 64: 51-62. Suárez-Estrella, F., M. C. Vargas-García, M. J. López and J. Moreno. 2007. Effect of horticultural waste composting on infected plant residues with pathogenic bacteria and fungi: integrated and localized sanitation. Waste Manage. 27: 886-892. Suryawanshi, P. C., A. B. Chaudhari and R. M. Kothari. 2010. Thermophilic anaerobic digestion: the best option for waste treatment. Crit. Rev. Biotechnol. 30: 31-40. Sutripta, S., B. Rajdeep, C. Sunanda, D. Pradeep, G. Sandipan and P. Subrata. 2010. Effectiveness of inoculation with isolated Geobacillus strains in the thermophilic stage of vegetable waste composting. Bioresour. Technol. 101: 2892-2895. Sweeten, J. M. and B. W. Auvermann. 2008. Composting manure and sludge. Agrilife Extension 479: 6-8. Tiquia, S. M., N. F. Y. Tam and I. J. Hodgkiss. 1996. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 93: 249-56. Tiquia S. M., T. L. Richard and M. S. Honeyman. 2000. Effects of windrow turning and seasonal temperatures on composting of hog manure from hoop structures. Environ. Technol. 21: 1037-46. Tsuchida, O., Y. Yamagata. T. Ishizuka, T. Arai, J. I. Yamada, M. Takeuchi and E. Ichishima. 1986. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14: 7-12. Vargas-Garcia, M. D., F. F. Suarez-Estrella, M. J. Lopez and J. Moreno. 2006. Influence of microbial inoculation and co-composting material on the evolution of humiclike substances during composting of horticultural wastes. Process Biochem. 41: 1438-1443. Verma, M., S. K. Brar, R. D. Tyagi, R. Y. Surampalli and J. R. Valéro. 2007. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem. Eng. J. 37: 1-20. Wang, H. Y., B. Q. Fan, Q. X. Hu and Z. W. Yin. 2011. Effect of inoculation with Penicillium expansum on the microbial community and maturity of compost. Bioresour. Technol. 102: 11189-11193. Wei, Z. M., B. D. Xi, Y. Zhao, S. P. Wang, H. L. Liu and Y. H. Jiang. 2007. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere. 68: 368-374. Wong, M. H. and L. M. Chu. 1985. Changes in properties of a fresh refuse compost in relation to root growth of Brassica chinensis. Agric. Wastes 14: 115-125. Wong, J. W. C., S. W. Y. Li and M. H. Wong. 1995. Coal fly ash as a composting material for sewage sludge: effects on microbial activities. Environ. Technol. 16: 527-537. Wortmann, C. S., C. A. Shapiro and D. D. Tarkalson. 2006. Composting manure and other organic residues. Lincoln Extension, University of Nebraska. Retrieved March 28, 2016 form the World Wide Web: https://my.extension.illinois.edu/documents/ 1722091307090709/NebGuide_Composting.pdf Xue, N., Q. Wang, C. Wu, L. Zhang and W. Xie. 2010. Enhanced removal of NH3 during composting by a biotrickling filter inoculated with nitrifying bacteria. Biochem. Eng. J. 51: 86-93. Xi, B. D., X. S. He, Z. M. Wei, Y. H. Jiang, M. X. Li, D. Li, Y. Li and Q. L. Dang. 2012. Effect of inoculation methods on the composting efficiency of municipal solid wastes. Chemosphere. 88: 744-750. Xie, K., X. Jia, P. Xu, X. Huang, W. Gu, F. Zhang, S. Yang and S. Tang. 2012. Improved composting of layer feces via supplementation with ammonia oxidizing archaea. Bioresour. Technol. 120: 70-77. Yadav, K. S., M. M. Mishra and K. K. Kapoor. 1982. The effect of fungal inoculation on composting. Agric. Wastes. 4: 329-333. Yamamura, S., Y. Morita, Q. Hasan, K. Yokoyama and E. Tamiya. 2002. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Biophys. Res. Commun. 294: 1138-43. Yang, F., G. X. Li, Q. Y. Yang and W. H. Luo. 2013. Effect of bulking agents on maturity and gaseous emissions during kitchen waste compost. Chemosphere. 93: 1393-1399. Zeng, G. M., D. L. Huang, G. H. Huang, T. J. Hu, X. Y. Jiang, C. L. Feng, Y. N. Chen, L. Tang and H. L. Liu. 2007. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresour. Technol. 98: 320-326. Zeng, G. M., H. L. Huang, D. L. Huang, X. Z. Yuan, R. Q. Jiang, M. Yu, H. Y. Yu, J. C. Zhang, R. Y. Wang and X. L. Liu. 2009. Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes. Process Biochem. 44: 396-400. Zeng, G. M., M. Yu, Y. Chen, D. Huang, J. Zhang, H. Huang, R. Jiang and Z. Yu. 2010. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour. Technol. 101: 222-227. Zeng, Y., A. D. Guardia, C. Ziebal, F. J. D. Macedo and P. Dabert. 2013. Impact of biodegradation of organic matters on ammonia oxidation in compost. Bioresour. Technol. 136: 49-57. Zhang, Y. and Y. He. 2006. Co-composting solid swine manure with pine sawdust as organic substrate. Bioresour. Technol. 97: 2024-2031. Zhang, J. C., G. M. Zeng, Y. N. Chen, M. Yu, H. L. Huang, C. Z. Fan, Y. Zhu, H. Li, Z. Liu and M. Chen. 2013. Impact of Phanerochaete chrysosporium inoculation on indigenous bacterial communities during agricultural waste composting. Appl. Microbiol. Biotechnol. 97: 3159-3169. Zhang, L. and X. Sun. 2014. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol. 171:274-284. Zhang, Y., Y. Zhao, Y. Chen, Q. Lu, M. Li, X. Wang, Y. Wei, X. Xie and Z. Wei. 2016. A regulating method for reducing nitrogen loss based on enriched ammonia-oxidizing bacteria during composting. Bioresour. Technol. 221:276-283. Zhou, C., Z. Liu, Z. L. Huang, M. Dong, X. L. Yu and P. Ning. 2015. A new strategy for co-composting dairy manure with rice straw: Addition of different inocula at three stages of composting. Waste Manage. 40: 38-43. Zucconi, F., A. Pera, M. Forte and M. De Bertoldi. 1981. Evaluating toxicity of immature compost. Biocycle. 22: 54-57.
摘要: 在堆肥過程中,堆肥原料中固有的微生物將可降解的有機物質轉變為腐殖質。然而,低效率和不良堆肥質量通常是由於固有微生物群落的數量不足或生物降解性差的原因引起的。近年來,由於外源微生物對堆肥質量和成熟度的正面影響,使得外源性微生物受到重視。本研究的目的是探討不同調整材之禽畜糞便在接種好氣性微生物的堆肥中其物理與化學特性之影響。試驗所接種混合菌液包含可產生2.7 Unit /mL纖維素酶與3.5 Unit / mL蛋白酶的根黴菌(Rhizopus),可產生8.7 Unit /mL纖維素酶與7.1 Unit / mL蛋白酶的木黴菌(Trichoderma)和可產生2.5 Unit/mL纖維素酶、1.1 Unit/mL蛋白酶與11.6 Unit/mL角蛋白酶的地衣芽孢桿菌(Bacillus licheniformis)以及可以進行硝化作用的硝化細菌(Nitrifying bacteria),經換算其銨態氮(NH4+)轉換率為10.3%。在堆肥試驗,每日監測溫度及氨氣濃度,於堆體溫度下降時進行翻堆並採樣分析。在試驗一,以牛糞,雞糞和墊料粗糠為原料。實驗設計包括兩種處理:未接菌之控制組(Control)和接種0.1%混合菌液之複合菌組(Mix),由結果顯示,複合菌組的最高溫度高於控制組,且發酵速度較快,另外平均氨氣(NH3)濃度低於控制組。在試驗二,以牛糞,雞糞和廢棄菇類太空包為原料。實驗設計包括三種處理:控制組,接種0.1%商業菌劑之商業組(Commercial)和接種0.1%混合菌液之複合菌組。結果顯示,複合菌組大腸桿菌群之數量在第24天已低於102 CFU / g。此外複合菌組氨氣濃度在堆肥第一天即顯著低於控制組與商業菌組(P<0.05),總氮損失相對於控制組少4.25%。在種植實驗中,複合菌肥料組的植株高度和根長顯著高於控制組(P<0.05)。在試驗三,以牛糞,雞糞與廢棄牧草為原料。實驗設計包括三種處理:控制組,0.1%商業組和0.1%複合菌組。結果顯示,複合菌組氨氣濃度低於控制組與商業菌組,且複合菌組可以顯著降低中洗纖維(P<0.05)。另外複合菌組之種子發芽指標顯著高於控制組(P<0.05)。綜合以上結果,本研究顯示,接種好氧微生物可能會影響不同的調整材之禽畜糞堆肥的物理和化學特性。接種好氧微生物能提高堆體溫度、減少氨氣濃度與總氮,以及提高植物之發芽及生長。
During the composting process, microorganisms inherent to the material transform degradable organic matter into a humus-like product. However, low efficiency and undesirable compost quality were often caused by an insufficient quantity or poor biodegradability of the indigenous microbial community. Therefore, exogenous microorganisms have received considerable attention. The purpose of this study was to explore the physical and chemical characteristics of different bulking agent's animal manure in compost inoculated with aerobic microorganisms. The inoculated mixed broth contains Rhizopus and Trichoderma produces 2.7 and 8.7 Units/mL of cellulase respectively and 3.5 and 7.1 Units/mL of protease respectively. Then, Bacillus licheniformis which produce 2.5 Units/mL of cellulase, 1.1 Units/mL of protease and 11.6 Units/mL of keratinase. The ammonium removal rate of Nitrifying bacteria was 10.3%. In exp. 1, the cattle manure, Layer manure, and rice hull bedding were used as the raw materials. The experimental design included two treatments: Control and 0.1% mixed microbe (Mix). The results showed that temperature of the Mix group was higher than Control group and the fermentation rate is faster. In addition the average ammonia concentration in Mix group was lower than Control group. In exp. 2, the cattle manure, Layer manure, and mushroom sawdust wastes were used as the raw materials. The experimental design included three treatments: control, 0.1% commercial agent (Commercial) and 0.1% Mix. The results showed that the amount of Coliform has been lower than 102 CFU/g at 24 days. Mix group was significantly reduced ammonia concentration on the first day of compost(P<0.05)while total nitrogen loss was less 4.25% than that of control. In planting experiment, the plant height and root length in Mix fertilizer group were significantly higher than Control group(P<0.05). In exp. 3, the cattle manure, Layer manure, and forage grass wastes were used as the raw materials. The experimental design included three treatments: control, 0.1% Commercial and 0.1% Mix. The results showed that the average ammonia concentration in Mix group was lower than Control group and Mix group significantly reduce the neutral detergent fiber(P<0.05). The germination index in Mix group was significantly higher than Control group and Commercial group(P<0.05). This study showed that inoculated aerobic microorganisms could impact of different bulking agents animal manure's physical and chemical characteristics. Inoculation of aerobic microorganisms could increase the temperature of the compost, reduce the ammonia concentration and total nitrogen, and improve the plant germination and growth.
URI: http://hdl.handle.net/11455/96534
文章公開時間: 2017-08-18
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.