Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96537
標題: 日糧補充奈米乳化維生素E對荷蘭乳牛乳房炎後乳腺修復之影響
Effects of dietary supplement of nano-emulsified vitamin E on recovery of post-mastitis mammary gland in Holstein cows
作者: 磨亮瑋
Liang-Wei Mo
關鍵字: 乳房炎
奈米乳化維生素E
受損乳腺修復
Mastitis
nano-emulsified vitamin E
mammary gland recovery
引用: 杜先覺、郭鴻志、莊士德、周濟眾、費昌勇、張紹光。2010。台灣中南部地區生乳中潛在細菌種類與藥物感受性之調查。台灣獸醫誌36: 296-304. 莊士德、陳書凱、謝睿純、曾惠鈴、余璨百、謝孟純、陳順安。2001。乳業技術推廣研討會-乳房炎防治對台灣乳業永續發展影響。行政院農業委員會100年度科技計畫研究報告。 賴辰瑋、吳思璇、林漢騏、謝豪晃。2015。飲水添加奈米化維生素對蛋雞維生素E吸收、產蛋性能、蛋品質及蛋黃中維生素E之影響。中國畜牧學會會誌44: 216–229。 蔡佳芬、陳啟民、潘志寬。2003。油脂食品中維生素 E 檢驗方法之確效及不確定度之評估。藥物食品檢驗局調查研究年報21: 168–180。 Adewuyi, A. A., E. Gruys, and F. J. C. M. van Eerdenburg. 2005. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 27: 117–126. Alderson, N. E., G. E. Mitchell, C. O. Little, R. E. Warner, and R. E. Tucker. 1971. Preintestinal disappearance of vitamin E in ruminants. J. Nutr. 101: 655–659. Allison, R. D., and R. A. Laven. 2000. Effect of vitamin E supplementation on the health and fertility of dairy cows: a review. Vet. Rec. 147: 703–708. Arfuso, F., F. Fazio, M. Levanti, M. Rizzo, S. D. Pietro, E. Giudice, and G. Piccione. 2016. Lipid and lipoprotein profile changes in dairy cows in response to late pregnancy and the early postpartum period. Arch. Anim. Breed. 59: 429–434. Astrup, H. N., S. C. Mills, L. J. Cook, and T. W. Scott. 1974. Stability of α-tocopherol in rumen liquor of the sheep. Acta. Vet. Scand. 15:451–453. Baldi, A. 2005. Vitamin E in dairy cows. Liv. Prod. Sci. 98: 117–122. Baldi, A., G. Savoini, L. Pinotti, E. Monfardini, F. Cheli, and V. Dell'Orto. 2000. Effects of vitamin E and different energy sources on vitamin E status, milk quality and reproduction in transition cows. J. Vet. Med. A. Physiol. Clin. Med. 47: 599–608. Baldi, A., V. Bontempo, F. Cheli, S. Carli, C. Sgoifo Rossi, and V. Dell'Orto. 1997. Relative bioavailability of vitamin E in dairy cows following intraruminal administration of three different preparations of dl-α-tocopheryl acetate. Vet. Res. 28: 517–524. Baldi, A., M. N. Losio, F. Cheli, R. Rebucci, L. Sangalli, E. Fusi, B. Bertasi, E. Pavoni, S. Carli, and I. Politis. 2004. Evaluation of the protective effects of a-tocopherol and retinal against ochratoxin a cytotoxicity. Br. J. Nutr. 91: 507–512. Barret, J. J., J. S. Hogan, W. P. Weiss, K. L. Smith, and L. M. Sordillo. 1997. Concentration of α-tocopherol after intramammary infusion of E. coli or lipopolysaccharide. J. Dairy. Sci. 80: 2826–2832. Bass, R. T., W. S. Swecker, and C. C. Stallings. 2000. Effects of supplemental parenteral administration of vitamin E and selenium to Jerseys and Holsteins during the nonlactating period. Am. J. Vet. Res. 61: 1052–1056. Batavani R. A., S. Asri, and H. Naebzadeh. 2007. The effect of subclinical mastitis on milk composition in dairy cows. Iran. J. Vet. Res. 8: 205–211. Bertoni, G., A. Minuti, and E. Trevisi. 2015. Immune system, inflammation and nutrition in dairy cattle. Anim. Prod. Sci. 55: 943–948. Ballet, N., J. C. Robert, and P. E. V. Williams. 2000. Forage evaluation in ruminant. New York: CABI Publishing. p. 399–425. Bouvier-Muller, J., C. Allain, F. Enjalbert, G. Tabouret, D. Portes, C. Caubet, C. Tasca, G. Foucras, and R. Rupp. 2015. Response to dietary-induced energy restriction in dairy sheep divergently selected for resistance or susceptibility to mastitis J. Dairy. Sci. 99: 480–492. Bouwstra, R. J., R. M. A. Goselink, P. Dobbelaar, M. Nielen, J. R. Newbold, and T. van Werven. 2008. The relationship between oxidative damage and vitamin E concentration in blood, milk and liver tissue from vitamin E supplemented and nonsupplemented periparturient heifers. J. Dairy Sci. 91: 977–987. Bourne, N., D. C. Wathes, M. McGowan, R. Laven. 2007. A comparison of the effects of parenteral and oral administration of supplementary vitamin E on plasma vitamin E concentrations in dairy cows at different stages of lactation. Livest. Sci. 106: 57–64. Bruno, D. R. 2010. Mastitis, Mammary Gland Immunity, and Nutrition. Mid-South Ruminant Nutrition Conference. p. 19–26. Campos, C., R. Guzmán, E. López-Fernández, and A. Casado. 2009. Evaluation of the copper (II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: The CUPRAC–BCS assay. Anal. Biochem. 392: 37–44. Castillo, C., J. Hernandez, M. Lopez-Alonoso, M. Miranda, and J. L. Bendito. 2003. Values of plasma lipid hydroperoxides and total antioxidant status in healthy dairy cows: preliminary observations. Arch. Tierz.46: 227–233. Castillo, C., J. Hernandez, M. Lopez-Alonoso, A. Bravo, V. Pereira, and J. L. Bendito. 2005. Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J. 169: 286–292. Chagunda, M. G. G., T. Larsen, M. Bjerring, and K. L. Ingvartsen. 2006. L-lactate dehydrogenase and N-acetyl-b-D-glucosaminidase activities in bovine milk as indicators of non-specific mastitis. J. Dairy. Res. 73: 431–440. Chandra, G., A. Aggarwal, A. K. Singh, M. Kumar, and R. C. Upadhyay. 2013. Effect of vitamin E and zinc supplementation on energy metabolites, lipid peroxidation, and milk production in peripartum sahiwal cows. Asian Australas. J. Anim. Sci. 26: 1569–1576. Chikunya, S., G. Demirel, M. Enser, J. D. Wood, R. G. Wilkinson, and L. A. Sinclair. 2004. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep. Br. J. Nutr. 91: 539–550. Compton, C.W. R., S. McDougall, K. Parker, and C. Heuer. 2007. Risk factors for peripartum mastitis in pasture-grazed dairy heifers. J. Dairy. Sci. 90: 4171–4180. Concha, C. 1986. Cell types and their immunological functions in bovine mammary tissues and secretions--a review of the literature. Nord. Vet. Med. 38: 257–272. Duane, N. R. 1981. G81-556 Using the California Mastitis Test (CMT) to Detect Subclinical Mastitis. Historical Materials from University of Nebraska-Lincoln Extension. EFSA Panel on Additives, and Products or Substances Used in Animal Feed (FEEDAP). 2010. Scientific opinion on the safety and efficacy of vitamin E as a feed additive for all animal species. EFSA Journal. 8:1635. Elsbach, P., and J. Weiss. 1985. Oxygen-dependent and oxygen-independent mechanisms of microbicidal activity of neutrophils. Immunol Lett. 11: 159–163. Farokh K., H. Kheirmanesh, H. K. Shabankareh, M. R. Targhibi, E. Maleki, M. Ebrahimi, and G. Y. Meng. 2014. Comparing the effect of oral supplementation of vitamin E, injective vitamin E and selenium or both during late pregnancy on production and reproductive performance and immune function of dairy cows and calve. Scientific World Journal. Article. ID 165841. Fogsgaard, K. K., P. LØvendahl, T. W. Bennedsgaard, and S. Østergaard. 2015. Changes in milk yield, lactate dehydrogenase, milking frequency, and interquarter yield ratio persist for up to 8 weeks after antibiotic treatment of mastitis. J. Dairy. Sci. 98: 7686–7698. Forsback L., H. Lindmark-Mansson, A. Andren, M. Akerstedt, and K. Svennersten-Sjaunja. 2009. Udder quarter milk composition at different levels of somatic cell count in cow composite milk. Animal. 3: 710–717. Ghiselli, A., M. Serafini, F. Natella, and C. Scaccini. 2000. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free. Radic. Biol. Med. 29: 1106–1114. Givens, D., R. Axford, and E. Owen. 2000. Forage evaluation in ruminant nutrition. New York: CABI Publishing. p. 345–71. Goff, J. P., and R. L. Hurst. 1997. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy. Sci. 80:1260–1268. Goff, J. P. 2006. Major advances in our understanding of nutritional influences on bovine health. J. Dairy. Sci. 89: 1292–1301. Greene, L. W. 2000. Designing mineral supplementation of forage programs for beef cattle. J. Anim. Sci. 78: 13–22. Grieger, A. S., V. Zoche-Golob, J. H. Paduch, M. Hoedemaker, and V. Krömker. 2014. Recurrent clinical mastitis in dairy cattle - importance and causes. Tierarztl Prax Ausg G Grosstiere Nutztiere. 42: 156–62. Grinberg, N., S. Elazar, I. Rosenshine, and N. Y. Shpigel. 2008. β-Hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infect. Immun. 76: 2802–2807. Harrison, J. H., D. D. Hancock, and H. R. Conrad. 1984. Vitamin E and selenium for reproduction of the dairy cow. J. Dairy Sci. 67: 123–132. Hayton, A. 2007. The impact of nutrition on mastitis. Proceedings of the British Mastitis Conference. p. 53–64. Heringstad, B., G. Klemetsdal, and T. Steine. 2003. Selection responses for clinical mastitis and protein yield in two Norwegian dairy cattle selection experiments. J. Dairy. Sci. 86: 2990–2999. Hidiroglou, M., A. J. Mcallister, and C. J. Williams. 1987. Prepartum supplementation of selenium and vitamin E to dairy cows: assessment of selenium status and reproductive performance. J. Dairy. Sci. 70: 1281–1288. Hidiroglou, M. 1995. Pharmacokinetic profile of plasma tocopherol following intramuscular administration of acetylated alpha-tocopherol to sheep. J. Dairy. Sci. 79: 1027–1030. Hidiroglou, M., and K. Karpinski. 1991. Disposition kinetics and dosage regimen of vitamin E administered intramuscularly to sheep. Br. J. Nutr. 65: 465–473. Hiss, S., U. Mueller, A. Neu-Zahren, and H. Sauerwein. 2007. Haptoglobin and lactate dehydrogenase measurements in milk for the identification of subclinically diseased udder quarters. Vet. Med. 52: 245–252. Hogan, J. S., K. L. Smith, W. P. Weiss, D. A. Todhunter, and W. L. Schockey. 1992. Bovine neutrophil responses to parenteral vitamin E. J. Dairy. Sci. 75: 340–399. Hogan, J. S., W. P. Weiss, and K. L. Smith. 1993. Role of vitamin E and selenium in host defense against mastitis. J. Dairy. Sci. 76: 2795–2803. Hogan, J. S., W. P. Weiss, K. L. Smith, L. M. Sordillo, and S. N. Williams. 1996. Alpha-tocopherol concentrations in milk and plasma during clinical Escherichia coli mastitis. J. Dairy. Sci. 79: 71–75. HymØller, L., and S. K. Jensen. 2010. Stability in the rumen and effect on plasma status of single oral doses of vitamin D and vitamin E in high-yielding dairy cows. J. Dairy. Sci. 93: 5748–5757. Jánosi, S., M. Kulcsár, P. Kóródi, L. Kátai, J. Reiczigel, S. J. Dieleman, J. A. Nikolic, G. Sályi, P. Ribiczey-Szabó, and G. Huszenicza. 2003. Energy imbalance related predisposition to mastitis in group-fed high-producing postpartum dairy cows. Acta. Vet. Hung. 51: 409–424. Julianto, T., K. H. Yuen, and A. M. Noor. 2000. Improved bioavailability of vitamin E with a self-emulsifying formulation. Int. J. Pharm. 200: 53–57. Juozaitiene, V., A. Juozaitis, and R. Micikeviciene. 2006. Relationship between somatic cell count and milk production or morphological traits of udder in black-and-white cow. Turk J. Vet. Anim. Sci. 30: 47–51. Kellog, D. W., D. J. Tomlinson, M. T. Socha, and A. B. Johnson. 2004. Effects of zinc methionine complex on milk production and somatic cell count of dairy cows: twelve-trial summary. Prof. Anim. Sci. 20: 295–301. Lago, A. S. M. Godden, R. Bey, P. L. Ruegg, and K. Leslie. 2011. The selective treatment of clinical mastitis based on on-farm culture results: II. Effects on lactation performance, including clinical mastitis recurrence, somatic cell count, milk production, and cow survival. J. Dairy. Sci. 94: 4457–4467. LeBlanc, S. J., T. F. Duffield, K. E. Leslie, K. G. Bateman, J. TenHag, J. S. Walton, and W. H. Johnson. 2002. The effect of prepartum injection of vitamin E on health in transition dairy cows. J. Dairy. Sci. 85: 1416–1426. LeBlanc, S. J., T. H. Herdt, W. M. Seymour, T. F. Duffield, and K. E. Leslie. 2004. Prepartum serum vitamin E, retinol, and betacarotene in dairy cattle, and their association with disease. J. Dairy. Sci. 87: 609–619. Leitner, G., E. Shoshani, O. Krifucks, M. Chaffer, and A. Saran. 2000. Milk leucocyte population patterns in bovine udder infection of different etiology. J. Vet. Med. B. 47: 581–589. Le Roux, Y., F. Laurent, and F. Moussaoui. 2003. Polymorphonuclear proteolytic activity and milk composition change. Vet. Res. 34: 629–645. Meglia, G. E., S. K. Jensen, C. Lauridsen, and K. P. Waller. 2006. α-Tocopherol concentration and stereoisomer composition in plasma and milk from dairy cows fed natural or synthetic vitamin E around calving. J. Dairy. Res. 73: 227–234. Mohammadian, B. 2011. The effect of subclinical mastitis on lactate dehydrogenase in dairy cows. Int. J. Anim. Vet. 3: 161–163. Moyes, K. M., J. K. Drackley, J. L. Salak-Johnson, D. E. Morin, J. C. Hope, and J. J. Loor. 2009. Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during mid-lactation. J. Dairy. Sci. 92: 4301– 4316. Mudron, P., J. Rehage, K. Qualmann, H. P. Sallmann, and H. Scholz. 1999. A study of lipid peroxidation and vitamin E in dairy cows with hepatic insufficiency. Zentralbl. Veterinarmed. A. 46: 219–224. Njeru, C. A., L. R. McDowell, N. S. Wilkinson, S. B. Linda, S. N. Williams, and E. L. Lentz. 1992. Serum α-tocopherol concentration in sheep after intramuscular injection of DL-α-tocopherol. J. Anim. Sci. 70: 2562–2567. Norberg, E., H. Hogeveen, I. R. Korsgaard, N. C. Friggens, K. Sloth, and P. LØvendahl. 2004. Electrical conductivity of milk: Ability to predict mastitis status. J. Dairy. Sci. 87: 1099–1107. NRC. 2001. Nutrient Requirements of Dairy Cattle. p. 166–168. Nyman, A. K., K. P. Waller, T. W. Bennedsgaard, T. Larsen, and U. Emanuelson. 2014. Associations of udder-health indicators with cow factors and with intramammary infection in dairy cows. J. Dairy. Sci. 97: 5459–5473. Olson, K. C. 2007. Management of mineral supplement programs for cow-calf operations. Vet. Clin. Food. Anim. 23: 69–90. Paape, M., J. Mehrzad, X. Zhao, J. Detilleux, and C. Burvenich. 2002. Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J. Mammary Gland Biol. 7: 109–121. Paape, M. J., D. Bannerman, X. Zhao, and J. Lee. 2003. The bovine neutrophil: structure and function in blood and milk. Vet. Res. 34: 597–627. Pandey, V., P. Aditi, P. Raghuwanshi, D. Sharma. 2012. Impact of subclinical mastitis on blood biochemistry of dairy cows. Ind. J. Anim. Sci. 82: 477–478. Peaker, N. 1977. Mechanism of milk secretion: milk composition in relation to potential difference across the mammary epithelium. Physiol. 270: 489–505. Pilotto, A., G. Savoini, A. Baldi, G. Invernizzi, C. De Vecchi, G. Theodorou, P. Koutsouli, and I. Politis. 2016. Short communication: Association between blood fatty acids, β-hydroxybutyrate, and α-tocopheryl in the periparturient period in dary cows: An observational study. J. Dairy. Sci. 99: 8121–8126. Pithon-Curi, T. C., M. P. De Melo, and R. Curi. 2004. Glucose and glutamine utilization by rat lymphocytes, monocytes, and neutrophils in culture: A comparative study. Cell Biochem. Funct. 22: 321–326. Plozza, T., V. Craige Trenerry, and D. Caridi. 2012. The simultaneous determination of vitamins A, E and β-carotene in bovine milk by high performance liquid chromatography–ion trap mass spectrometry (HPLC–MSn). Food Chem. 134: 559–563. Politis, I., M. Hidroglou, T. R. Batra, J. A. Gilmore, R. C. Gorewit, and H. Scherf. 1995. Effects of vitamin E on immune function of dairy cows. Am. J. Vet. Res. 56: 179–184. Politis, I., G. Theodorou, A. D. Lampidonis, A. Kominakis, and A. Baldi. 2012. Short communication: oxidative status and incidence of mastitis relative to blood α-tocopherol concentrations in the postpartum period in dairy cows. J. Dairy. Sci. 95: 7331–7335. Politis, I., N. Hidiroglou, F. Cheli, and A. Baldi. 2001. Effects of vitamin E on urokinase-plasminogen activator receptor expression by bovine neutrophils. Am. J. Vet. Res. 62: 1934–1938. Politis, I., I. Bizelis, A. Tsiaras, and A. Baldi. 2004. Effect of vitamin E supplementation on neutrophil function, milk composition and plasmin activity in dairy cows in a commercial herd. J. Dairy. Res. 71: 273–278. Politis, I. 2012. Reevaluation of vitamin E supplementation of dairy cows: bioavailability, animal health and milk quality. Animal. 9: 1427–1434. Pontes, C. S. P., J. Monteiro, A. B. Prata, M. M. Guardieiro, D. A. M. Pinto, and G. O. Fernandes. 2015. Effect of injectable vitamin E on incidence of retained fetal membranes and reproductive performance of dairy cows. J. Dairy. Sci. 98: 2437–2449. Puppel, K. A., and B. Kuczyńska. 2015. The etiology of oxidative stress in the various species of animals, a review. J. Sci. Food. Agric. 95: 2179–2184. Qu, Y., A. N. Fadden., M. G. Traber, and G. Bobe. 2014. Potential risk indicators of retained placenta and other diseases in multiparous cows. J. Dairy. Sci. 97.7: 4151–4165. Raphael, B. C., P. S. Dimick, and D. L. Puppione. 1972. Lipid choroderization of bovine serum lipoproteins throughout gestation and lactation. J. Dairy. Sci. 56:1025–1032. Reddy, P. G., J. L. Morrill, H. C. Micocha, and J. S. Stevenson. 1987. Vitamin E is immunostimulatory in calves. J. Dairy. Sci. 70: 993–999. Rigotti, A. 2007. Absorption, transport, and tissue delivery of vitamin E. Mol. Aspects. Med. 28: 423–436. Riollet, C., P. Rainard, and B. Poutrel. 2000. Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv. Exp. Med. Biol. 480: 247–258. Roquet, J., C. F. Nockels, and A. M. Papas. 1992. Cattle blood plasma and red blood cell α-tocopherol levels in response to different chemical forms and routes of administration of vitamin E. J. Anim. Sci. 70: 2542–2550. Sachan R., K. Khatri, and S. B. Kasture. 2010. Self-emulsifying drug delivery system a novel approach for enhancement of bioavailability. Int. J. Pharm. Tech. Res. 2: 1738–1745. Sarikaya, H., C. Prgomet, M. W. Pfaffl, and R. M. Bruckmaier. 2004. Differentiation of leukocytes in bovine milk. Milchwissenschaft. 59: 586–589. Sarikaya, H. 2006. Somatic cell populations in milk: Importance in mammary gland physiology and behaviour during technological processing. Doctor dissertation. Technical University Munich. SAS. 2002. SAS User's Guide. Statistical Institute, Inc., Cary. N. C. Schmölz, L., M. Birringer, S. Lorkowski, and M. Wallert. 2016. Complexity of vitamin E metabolism. World. J. Biol. Chem. 7: 14–43. Schukken, Y. H., D. J. Wilson, F. Welcome, L. Garrison-Tikofsky, and R. N. Gonzalez. 2003. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 34: 579–596. Sharma, N., S. K. Maiti, and S. Roy. 2003. Role of vitamin E in the control of mastitis in dairy cows. Vet. Practitioner. 4: 140–143. Sharma, N., and S. K. Gupta. 2005. Effect of dietary supplementation of vitamin E and selenium in sub clinical mastitis in dairy cows. Ind. J. Vet. Med. 25: 76-79. Sharma, N. 2007. Alternative approach to control intramammary infection in dairy cows: a review. Asian. J. Anim. Vet. Adv. 2: 50–62. Sharma, N., N. K. Singh, and M. S. Bhadwal. 2011. Relationship of somatic cell count and mastitis: An overview. Asian-australas. J. Anim. Sci. 24: 429–438. Shin, I. S., and F. N. Owens. 1990. Ruminal and intestinal disappearance of several sources of vitamin E. J. Anim. Sci. 68: 154–158. Smith, K. L., J. H. Harrison, D. D. Hancock, D. A. Todhunter, and H. R. Conrad. 1984. Effect of vitamin E and selenium supplementation on incidence of clinical mastitis and duration of clinical symptoms. J. Dairy. Sci. 67: 1293–1300. Smith, K. L., W. P. Weiss, and J. S. Hogan. 1998. Influence of vitamin e and selenium on mastitis and milk quality in dairy cows. J Anim. Sci. 75: 1659–1665. Sordillo, L. M., K. Shafer-weaver, and D. Derosa. 1997. Immunobiology of the Mammary Gland. J. Dairy. Sci. 80: 1851–1865. Sordillo, L. M., and S. L. Aitken. 2009. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 128: 104–109. Sordillo, L. M. 2015. Nutritional strategies to optimize dairy cattle immunity. J. Dairy. Sci. 99: 4967–4982. Spear, W. J., and W. P. Weiss. 2008. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 176: 70–76. Ster, C., M. C. Loiselle, and P. Lacasse. 2012. Effect of postcalving serum nonesterified fatty acids concentration on the functionality of bovine immune cells. J. Dairy. Sci. 95: 708–717. Stucken, E. M., Y. C. S. M. Laurenson, and G. A. Brockmann. 2015. Go with the flow—biology and genetics of the lactation cycle. Front Genet. 6:118. doi: 10.3389/fgene.2015.00118. Sunhan, N. A., and N. Sharma. 2010. Mastitis an important production disease of dairy animals. p. 72–88. 1st Eden. Sarva Manav Vikash Samiti, Gurgoan, India. Suriyasathaporn, W., A. J. Daemen, E. N. Noordhuizen-Stassen, S. J. Dieleman, M. Nielen, and Y. H. Schukken. 1999. Beta-hydroxybutyrate levels in peripheral blood and ketone bodies supplemented in culture media affect the in vitro chemotaxis of bovine leukocytes. Vet. Immunol. Immunopathol. 68: 177–186. Takahashi, H., T. Komatsu, K. Hodate, R. Horino, and Y. Yokomizo. 2005. Effect of intramammary injection of RbIL-8 on milk levels of somatic cell count, chemiluminescence activity and shedding patterns of total bacteria and S. aureus in Holstein cows with naturally Infected-subclinical mastitis. J. Vet. Med. B. 52: 32–37. Toutain, P. L., M. Hidiroglou, and E. Channlcy. 1995. Pharmacokinetics and tissue uptake of D-a-tocopherol in sheep following a single intraperitoneal injection. J. Dairv. Sci. 78: 1561–1566. United States Pharmacopeial Convention. 1979. The United States Pharmacopeia: The National Formulary. Rockville. Udovičić, M., K. Baždarić, L. Bilić-Zulle, and M. Petrovečki. 2007. What we need to know when calculating the coefficient of correlation? Biochemia Medica 17: 10–15. Viguier, C., S. Arora, N. Gilmartin, K. Welbeck, and R. O'Kennedy. 2009. Mastitis detection: current trends and future perspectives. Trends. Biotechnol. 27: 486–493. Vagni, S., F. Saccone, L. Pinotti, and A. Baldi. 2011. Vitamin E bioavailability: past and present insights. Food. Nutr. Sci. 2: 1088–1096. Waller, K. P., C. H. Sandgren, U. Emanuelson, and S. K. Jensen. 2007. Supplementation of RRR-α-tocopheryl acetate to periparturient dairy cows in commercial herds with high mastitis incidence. J. Dairy. Sci. 90: 3640–3646. Washburn, S. P., S. L. White, J. T. Green, and G. A. Benson. 2002. Reproduction, mastitis, and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems. J. Dairy. Sci. 85: 105–111. Weiss, W. P. 1998. Requirements of fat-soluble vitamins for dairy cows: a review. J. Dairy. Sci. 81: 2493–2501. Weiss, W. P., and D. J. Wyatt. 2003. Effect of dietary fat and vitamin E on α-tocopherol in milk from dairy cows. J. Dairy. Sci. 86: 3582–3591. Weiss, W. P. 2005. Antioxidant nutrients, cow health, and milk quality. p. 11–18. The Penn State Dairy Cattle Nutrition Workshop. Grantville. Weiss W. P., J. S. Hogan, and D. J. Wyatt. 2009. Relative bioavailability of all-rac and RRR vitamin E based on neutrophil function and total α-tocopherol and isomer concentrations in periparturient dairy cows and their calves. J. Dairy. Sci. 92: 720–731. Yang, F. L., and X. S. Li. 2015. Role of antioxidant vitamins and trace elements in mastitis in dairy cows. J. Adv. Vet. Anim. Res. 2: 1–9. Zhao, X., and P. Lacasse. 2007. Mammary tissue damage during bovine mastitis: causes and control. J. Anim. Sci. 86: 57–65. Zhao, L. L., D. P. Yang, P. Chen, W. X. Dong, and D. M. Wang. 2008. Supplementation with Selenium and Vitamin E Improves Milk Fat Depression and Fatty Acid Composition in Dairy Cows Fed Fat Diet. Asian-Aust. J. Anim. Sci. 21: 838–844. Zigo, F., Z. Farkasõvá, J. Elećko, M. Lapin, M. Chripková, and A. Czerski. 2014. Effect of parenteral administration of selenium and vitamin E on health status of mammary gland and on selected antioxidant indexes in blood of dairy cows. Vet. 17: 217–223.
摘要: 乳房炎是乳牛場中感染率最高且影響經濟效應最大的感染性疾病,當牛隻罹患乳房炎會導致牛乳產量下降與支出治療費用等導致經濟上之虧損。維生素E為抗氧化劑,給予牛隻額外添加維生素E具有改善免疫性能、降低乳房炎發生率等功能性。有鑑於國內外尚未有吸收效果穩定、投予簡易之牛用液態維生素E產品,因此本試驗宗旨為評估日糧中額外補充奈米乳化維生素E對於荷蘭乳牛受損乳腺修復之影響。奈米乳化維生素E在口服給予後會經由胃腸道的蠕動與液體形成水包油的奈米級微粒滲透進入胃腸道黏膜層,可更快速進入血液循環中利用。目前尚未有文獻使用奈米乳化維生素E於牛隻,為了確保在不同生理階段牛隻皆可吸收奈米乳化維生素E,因此試驗一使用3頭泌乳牛以及1頭瘤胃開窗女牛,共4頭。以拉丁方格方式分為 (1) 控制組 (Control, CON; 無額外添加維生素E)、(2) 口服奈米乳化維生素E組 (Vitamin E, VE; 3000 IU) 及 (3) 肌肉注射維生素A, D, E組 (Intramuscular injection, IM; 250 IU),瘤胃開窗女牛則包含CON、VE、IM以及瘤胃投予奈米乳化維生素E組 (Ruminal vitamin E, RUVE; 3000 IU) 與瘤胃投予商業粉末維生素E組 (Ruminal vitamin E powder, RUVP; 3000 IU),並檢測牛隻血漿中維生素E的變化。結果顯示女牛與泌乳牛隻皆可吸收奈米乳化維生素E進入體循環中被利用 (與控制組相比,上升1.0-1.5 μg/mL)。試驗二使用21頭荷蘭泌乳牛,逢機分為控制組 (Control, CON; 無額外添加維生素E) 與口服奈米乳化維生素E組 (Vitamin E, VE; 3000 IU)。受試牛隻為現場人員判斷牛隻感染乳房炎,接受正常抗生素治療後,口服奈米乳化維生素E組每四天給予口服一劑3000 IU奈米乳化維生素E,控制組則無額外給予維生素E之補充。結果顯示在乳中體細胞、乳酸去氫酶與血漿中非酯化脂肪酸、β-羥基丁酸與總抗氧化能力在兩組之間均無顯著差異,但乳中乳酸去氫酶活性在口服奈米乳化維生素E組下降比例較控制組快 (VE組vs. 控制組,27.85% vs. 36.57%)。整體而言,奈米乳化維生素E可被女牛與泌乳牛吸收至體循環中利用。試驗二中結果均無顯著差異,奈米乳化維生素E的添加使乳中乳酸去氫酶下降百分較控制組迅速,因此其對於乳房炎治療後之乳腺修復或有促進效果,但仍待進一步探討。
Mastitis is the most economically challenging and the most problematic disease in dairy cow throughout the world. Mastitis does not only cause the temporarily yield loss but also lead to the permanent damage to the udder. There is evidence that vitamin E supplementation is associated with a decreased incidence of mastitis and improved immune response. Due to the lack of information about the efficacy of liquid formulate vitamin E via oral-administration, the aim of this study is to evaluate the absorption rate and its effects on recovering udder health in post-mastitis cattle. In study I, 3 lactating cows were used in a 3×3 Latin squire experiment. Cattle were divided in to 3 groups: (1) control (Control, CON; no additional supply of vitamin E), (2) oral nano-emulsified vitamin E (Vitamin E, VE; 3000 IU) and (3) commercial intramuscle injectable vitamin A, D, E (Intramuscule injection, IM; 250 IU). Moreover, one rumen fistulated heifer was determined if the nano-emulsified vitamin E would be degraded in rumen. All treatments composed of CON, VE, IM, ruminal nano-emulsified vitamin E (Ruminal vitamin E, RUVE; 3000 IU) and ruminal vitamin E powder (Ruminal vitamin E powder, RUVP; 3000IU). The results indicated that both lactating cows and heifer absorb the nano-emulsified vitamin E (1.01-1.5 μg/mL increase compared to CON) and the nano-emulsified vitamin E was not degraded in rumen. The study II was conducted in 3 commercial farms. Cows (n=21) were randomly assigned into two groups: (1) cows received 3000 IU nano-emulsified vitamin E (Vitamin E, VE) per 4 days, or (2) no additional supply of vitamin E (Control, CON) immediately following the end of antibiotics treatment. The results showed no significant difference in somatic cell counts (SCC), lactate dehydrogenase (LDH) activity, nonestesterified fatty acid (NEFA), β-hydroxybutyrate (BHBA) and total antioxidant capacity (TAC) between CON and VE groups. The percentages of LDH activity were decreased more quickly in VE compared to CON (VE vs. CON, 27.85% vs. 36.57%) suggested an improved mammary recovery. In conclusion, the nano-emulsified vitamin E is well absorbed by both heifer and lactating cows but with limited recovering ability on infected mammary glands post mastitis. Therefore, the effect of nano-emulsified vitamin E to the ability of recovering udder health post mastitis needs further investigation.
URI: http://hdl.handle.net/11455/96537
文章公開時間: 2020-08-28
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.