Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96547
標題: 以 Nrf2 及 NF-κB 路徑評估牛樟芝菌絲固態發酵物應用於肉雞飼糧之潛在抗氧化及免疫調節影響
Evaluation of potential antioxidant and immunomodulatory effects of solid-state fermented product by Antrodia cinnamomea and the underlying molecular mechanisms via Nrf2- and NF-κB-dominated pathways in broiler chickens
作者: 李旻亭
Min-Ting Lee
關鍵字: 牛樟芝
抗氧化
免疫
白肉雞
分子調控
Antrodia cinnamomea
antioxidant
immunomodulation
broiler chicken
molecular modulation
引用: Aggarwal, B. B., and S. Shishodia. 2006. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 71:1397-1421. Akbarian, A., A. Golian, H. Kermanshahi, S. De Smet, and J. Michiels, 2015. Antioxidant enzyme activities, plasma hormone levels and serum metabolites of finishing broiler chickens reared under high ambient temperature and fed lemon and orange peel extracts and Curcuma xanthorrhiza essential oil. J. Anim. Physiol. Anim. Nutr. 99:150-162. Akbarian, A., Michiels, J. Degroote, M. Majdeddin, A. Golian, and S. De Smet. 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 7:37. doi: 10.1186/s40104-016-0097-5. Aluwong, T., M. Kawu, M. Raji, T. Dzenda, F, Govwang, V. Sinkalu, and J. Ayo1. 2013. Effect of yeast probiotic on growth, antioxidant enzyme activities and malondialdehyde concentration of broiler chickens. Antioxidants (Basel). 2:326-339. Anwar, Z., M. Gulfraz, and M. Irshad. 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 7:163-173. Ao, Z. H., Z. H. Xu, Z. M. Lu, H. Y. Xu, X. M. Zhang, and W. F. Dou. 2009. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J. Ethnophrarmcol. 121:194−212. Arantes, V., J. Jellison, and B. Goodell. 2012. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl. Microbiol. Biotechnol. 94:323-338. Arantes, V., and B. Goodell. 2014. Current understanding of brown-rot fungal biodegradation mechanisms: a review. Page 3-21 in Deterioration and protection of sustainable biomaterials. T. P. Schultz, B. Goodell, and D. D. Nicholas, ed. ACS Symposium Series. doi: 10.1021/bk-2014-1158.ch001. Arias-Salvatierra, D., E. K. Silbergeld, L. C. Acosta-Saavedra, and E. S. Calderon-Aranda. 2011. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide. Cell Signal. 23:425-435. Arts, M. J., G. R. Haenen, H. P. Voss, and A. Bast. 2004. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol. 42:45-49. Attia, Y. A., M. A. Al-Harthi, M. A. Korish, and M. M. Shiboob. 2017. Fatty acid and cholesterol profiles, hypocholesterolemic, atherogenic, and thrombogenic indices of broiler meat in the retail market. Lipids Health Dis. 16:40. Doi: 10.1186/s12944-017-0423-8. Banerjee, G., R. Pal, and A. K. Ray. 2015. Applications of nutrigenomics in animal sectors: a review. Asian J. Anim. Vet. Adv. 10:489-499. Borchers, A. T., C. L. Keen, and M. E. Gershwin. 2004. Mushrooms, tumors, and immunity: An update. Exp. Biol. Med. 229:393-406. Brown, G. C. 2007. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem. Soc. Trans. 35:1119-1121. Calabrese, V., C. Cornelius, C. Mancuso, G. Pennisi, S. Calafato, F. Bellia, T. E. Bates, A. M. G. Stella, T. Schapira, A. T. D. Kostova, and E. Rizzarelli. 2008. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res. 33:2444-2471. Cardozo, L. F., L. M. Pedruzzi, P. Stenvinkel, M. B. Stockler-Pinto, J. B. Daleprane, M. Jr. Leite, and D. Mafra. 2013. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie. 95:1525-1533. Castellani, P., E. Balza, and A. Rubartelli. 2014. Inflammation, DAMPs, tumor development, and progression: a vicious circle orchestrated by redox signaling. Antioxid. Redox Signal. 20:1086-1097. Cha, W. S., J. L. Ding, and D. Choi. 2009. Comparative evaluation of antioxidant, nitrite scavenging, and antitumor effects of Antrodia camphorata extract. Biotechnol. Bioproc. E. 14:232-237. Chancellor, L. and B. Glick. 1960. Effects of temperature as a stressor on white blood cells, adrenals and bursa of Fabricius of chicks. Am. J. Physiol. 198:1346-1348. Chang, S. T., and P. G. Miles. 2004. Lignocellulose degradation and utilization. Page 392-397 in Mushrooms: Cultivation, nutritional value, medicinal effect, and environmental impact. Chang S.-T. and Miles P. G., ed. CRC Press Inc. Chang, S. T. 2008. Overview of mushroom cultivation and utilization as functional foods. Page 1-34 in Mushrooms as Functional Foods. P. C. K. Cheung, ed. John Wiley and Sons, Inc., Hoboken, NJ, USA. Chen, J. C., C. H. Su, and M. H. Lan. 2001. Study on solid cultivation and bioactivity of Antrodia camphorata. Fungal Sci. 16:65-72. Chen, J., G. Tellez, J. D. Richards, and J. Escobar. 2015. Identification of potential biomarkers for gut barrier failure in broiler chickens. Front. Vet. Sci. 2:14. doi: 10.3389/fvets.2015.00014. Chen, X. L., and C. Kunsch. 2004. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr. Pharm. Des. 10:879-891. Cheng, G., Y. Zhao, Y. Li, X. Li, Q. Han, C. Dai, and Y. Li. 2014. Forsythiaside attenuates lipopolysaccharide-induced inflammatory responses in the bursa of Fabricius of chickens by downregulating the NF-κB signaling pathway. Exp. Ther. Med. 7:179-184. Cho, H.Y., F. Imani, L. Miller-Degraff, D. Walters, G. A. Melendi, M. Yamamoto, F. P. Polack, and S. R. Kleeberger. 2008. Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus (RSV) disease. Am. J. Respir. Crit. Care Med. 179:138-150. Choi, S., V. T. Nguyen, N. Tae, S. Lee, S. Ryoo, B. S. Min, and J. H. Lee. 2014. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells. Toxicol. Appl. Pharmacol. 280:434-442. Chu, Y. T., C. T. Lo, S. C. Chang and T. T. Lee. 2017. Effects of Trichoderma fermented wheat bran on growth performance, intestinal morphology and histological findings in broiler chickens. Ital. J. Anim. Sci. 16:82-92. Coleman, J. W. 2001. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1:1397-1406. Contestabile, A. 2000. Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res. Brain Res. Rev. 32:476-509. Crofford, L. J., B. Tan, C. J. McCarthy, and T. Hla. 1997. Involvement of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis Rheum. 40:226-236. Dantzer, r., J. C. O'Connor, G. G. Freund, R. W. Johnson, and K. W. Kelley. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9:46-56. Dawson, K. A. 2006. Nutrigenomics: Feeding the genes for improved fertility. Ani. Reprod. Sci. 96:312-322. de Jonge, J., and H. C. van Trijp. 2013. The impact of broiler production system practices on consumer perceptions of animal welfare. Poult. Sci. 92:3080-3095. de Leon, L., B. Beltran, and L. Moujir. 2005. Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against Bacillus subtilis. Planta. Med. 71:313-319. Deeb, N., and A. Cahaner. 2002. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus nonselected parents under normal and high ambient temperatures. Poult. Sci. 81:293-301. Di Virgilio, F. 2004. New pathways for reactive oxygen species generation in inflammation and potential novel pharmacological targets. Curr. Pharm. Des. 10:1647-1652. Dinis, T. C. P., V. M. C. Madeira, M. L. M. Almeida. 1994. Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315:161-169. do Nascimento, P. G., T. L. Lemos, A. M. Bizerra, A. M. Arriaga, D. A. Ferreira, G. M. Santiago, R. Braz-Filho, and J. G. Costa. 2014. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 19:1317-1327. Dostert, C., V. Pétrilli, R. VanBruggen, C. Steele, B. T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. EL Bishlawy, I. M. 1999. Red blood cells, hemoglobin and the immune system. Med. Hypotheses.53:345-346. El-Lethey, H., B. Huber-Eicher, and T. W. Jung. 2003. Exploration of stress-induced immunosuppression in chickens reveals both stress-resistant and stress-susceptible antigen responses. Vet. Immunol. Immunopathol. 95:91-101. Farombi, E. O., S. YShrotriya, H. K. Na, S. H. Kim, and Y. J. Surh. 2008. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem. Toxicol. 46:1279-1287. Fialkow, L., Y. Wang, and G. P. Downey. 2007. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic. Biol. Med. 42:153-164. Franchi, L., T. Eigenbrod, R. Muñoz-Planillo, and G. Nuñez. 2009. The inflammasome: a caspase-a-activation platform that regulates immune responses and disease pathogenesis. Nat. Immuno. 10:241-247. Freeman, B. M. 1985. Stress and the Domestic Fowl: Physiological Fact or Fantasy? Worlds Poult. Sci. J. 41:45-51. Fujioka, S., J. Niu, C. Schmidt, G. M. Sclabas, B. Peng, T. Uwagawa, Z. Li, D. B. Evans, J. L. Abbruzzese, and P. J. Chiao. 2004. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol. Cell Biol. 24:7806-7819. Fukumoto, J., I. Fukumoto, P. T. Parthasarathy, R. Cox, B. Huynh, G. K. Ramanathan, R. B. Venugopal, D. S. Allen-Gipson, R. F. Lockey, and N. Kolliputi. 2013. NLRP3 deletion protects from hyperoxia-induced acute lung injury. Am. J. Physiol. Cell Physiol. 305:C182-C189. Furuyashiki, T. and S. Narumiya. 2009. Roles of prostaglandin E receptors in stress responses. Curr. Opin. Pharmacol. 9:31-38. Ganesh Yerra, V., G. Negi, S. S. Sharma, and A. Kumar. 2013. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-kappaB pathways in diabetic neuropathy. Redox Biol. 1:394-397. Geethangili, M., and Y. M. Tzeng, 2011. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based Complement. Alternat. Med. 2011:212641, http://dx.doi.org/10.1093/ecam/nep108. Gessner, D. K., A. Fiesel, E. Most, J. Dinges, G. Wen, R. Ringseis, and K. Eder. 2013. Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Vet Scand. 55, http://www.actavetscand.com/content/55/1/18. German, J.B., A. M. Zivkovic, D. C. Dallas, and J. T. Smilowitz. 2011. Nutrigenomics and personalized diets: What will they mean for food? Annu. Rev. Food Sci. Technol. 2:97-123. Giannenas, I., I. S. Pappas, S. Mavridis, G. Kontopidis, J. Skoufos, and I. Kyriazakis. 2010. Performance and antioxidant status of broiler chickens supplemented with dried mushrooms (Agaricus bisporus) in their diet. Poult. Sci. 89:303-311. Gilmore, T. D. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680-6684. Gokila Vani, M., K. J. Kumar, J. W. Liao, S. C. Chien, J. L. Mau, S. S. Chiang, C. C. Lin, Y. H. Kuo, and S. Y. Wang. 2013. Antcin C from Antrodia cinnamomea protects liver cells against free radical-induced oxidative stress and apoptosis in vitro and in vivo through Nrf2-dependent mechanism. Evid. Based Complement. Alternat. Med. 2013:296082. http://dx.doi.org/10.1155/2013/296082. Goodell, B., Y. Qian, and J. Jellison. 2008. Fungal decay of wood: soft rot - brown rot - white rot. Page 9-31 in Development of commercial wood preservatives. T. P. Schultz, H. Militz, M. H. Freeman, B. Goodell, and D. D. Nicholas, ed. ACS Symposium Series. doi: 10.1021/bk-2008-0982. Gregory, R. D., S. R. Baillie, and R. I. Bashford. 2000. Monitoring breeding birds in the United Kingdom. Bird Census News. 13:101-112. Gross, W. B., and P. B. Siegel. 1981. Long-term exposure of chickens to three levels of social stress. Avian Dis. 25:312-325. Guo, F. C., B. A. Williams, R. P. Kwakkel, and M. W. A. Verstegen. 2003. In vitro fermentation characteristics of two mushroom species, and herb, and their polysaccharide fractions, using chicken cecal contents as inoculum. Poult. Sci. 82: 1608-1615. Guo, F. C., B. A. Williams, R. P. Kwakkel, H. S. Li, X. P. Li, J. Y. Luo, W. K. Li, and M. W. Verstegen. 2004. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. Poult. Sci. 83:175-182. Guo, R. F., and P. A. Ward. 2007. Role of oxidants in lung injury during sepsis. Antioxid. Redox Signal. 9:1991-2002. Gupta, S. C., C. Sundaram, S. Reuter, and B. B. Aggarwal. 2010. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim. Biophys. Acta. 1799:775-787. Haddad, J. J. 2002. Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for nuclear factor-κB. Crit. Care. 6:481-490. Halliwell, B. 1989. Tell me about free radicals, doctor: a review. J. R. Soc. Med. 82:747-752. Halliwell, B., and M. Whiteman. 2004. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Brit. J. Pharmacol. 142:231-255. Halpern, G. M. 2007. Healing Mush-rooms: Effective Treatments for Today's Illnesses. New York, USA: Square One Publishers. Han X., T. Shen, and H. Lou. 2007. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 8:950-988. Hayes, J. D., and L. I. McLellan. 1999. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 31:273-300. He, R. R., Y. Li, X. D. Li, R. N. Yi, X. Y. Wang, B. Tsoi, K. K. Lee, K. Abe, X. Yang, and H. Kurihara. 2013. A new oxidative stress model, 2,2-azobis(2-amidinopropane) dihydrochloride induces cardiovascular damages in chicken embryo. PLoS One. 8:e57732. http://dx.doi.org/10.1371/journal.pone.0057732. Heid, M. E., P. A. Keyel, C. Kamga, S. Shiva, S. C. Watkins, and R. D. Salter. 2013. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 191:5230-5238. Hou, D. X., D. Luo, S. Tanigawa, F. Hashimoto, T. Uto, S. Masuzaki, M. Fujii, and Y. Sakata. 2007. Prodelphinidin B-4 3'-O-gallate, a tea polyphenol, is involved in the inhibition of COX-2 and iNOS via the downregulation of TAK1-NF-kB pathway. Biochem. Pharmacol. 74:742-751. Howard, R. L., E. Abotsi, E. L. Jansen van Rensburg, and S. Howard. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2:602-619. Hseu, Y. C., F. Y. Wu, J. J. Wu, J. Y. Chen, W. H. Chang, F. J. Lu, Y. C. Lai, and H. L. Yang. 2005. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int. Immunopharmacol. 5:1914-1925. Hsieh, Y. H., F. H. Chu, Y. S. Wang, S. C. Chien, S. T. Chang, J. F. Shaw, C. Y. Chen, W. W. Hsiao, Y. H. Kuo, and S. Y. Wang. 2010. Antrocamphin A, an anti-inflammatory principal from the fruiting body of Taiwanofungus camphoratus, and its mechanisms. J. Agric. Food Chem. 58:3153−3158. Hun Lee, J., L. Shu, F. Fuentes, Z. Y. Su, and A. N. Tony Kong. 2013. Cancer chemoprevention by traditional Chinese herbal medicine and dietary phytochemicals: targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J. Tradit. Complement. Med. 3:69-79. Huang, L. H., A. Elvington, and G. J. Randolph. 2015. The role of the lymphatic system in cholesterol transport. Front Pharmacol. 6: 182. doi: 10.3389/fphar.2015.00182. Huang, L. C., S. J. Huang, C. C. Chen, and J. L. Mau. 1999. Antioxidant properties of Antrodia camphorata. In: Proceedings of the 3rd International Conference on Mushroom Biology and Mushroom Products, Sydney, Australia. 275-283. Huang, T. H., Y. H. Chiu, Y. L. Chan, H. Wang, T. L. Li, C. Y. Liu, C. Y. Yang, T. Y. Lee, J. S. You, K. H. Hsu, and C. J. Wu. 2015. Antrodia cinnamomea alleviates cisplatin-induced hepatotoxicity and enhances chemo-sensitivity of line-1 lung carcinoma xenografted in BALB/cByJ mice. Oncotarget. 6:25741-25754. Huang, T. T., Y. Zou Y, and R. Corniola. 2012. Oxidative stress and adult neurogenesis--effects of radiation and superoxide dismutase deficiency. Semin. Cell Dev. Biol. 23:738-744. Indo, H. P., H. C. Yen, I. Nakanishi, K. Matsumoto, M. Tamura, Y. Nagano, H. Matsui, O. Gusev, R. Cornette, T. Okuda, Y. Minamiyama, H. Ichikawa, S. Suenaga, M. Oki, T. Sato, T. Ozawa, D. K. St. Clair, and H. J. Majima. 2015. A mitochondrial superoxide theory for oxidative stress diseases and aging. J. Clin. Biochem. Nutr. 56:1-7. Ismail, I. B., K. A. Al-Busadah, and S. M. El-Bahr. 2013. Oxidative stress biomarkers and biochemical profile in broilers chicken fed zinc bacitracin and ascorbic acid under hot climate. Am. J. Biochem. Mol. Biol. 3:202-214. Ivanov, A. I., and A. A. Romanovsky. 2004. Prostaglandin E2 as a mediator of fever: synthesis and catabolism. Front. Biosci. 9:1977-1993. Jensen Jr. K. A., C. J. Houtman, Z. C. Ryan, and K. E. Hammel. 2001. Pathways for extracellular fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 67:2705-2711. Jiang, Y., M. Wang, K. Huang, Z. Zhang, N. Shao, Y. Zhang, W. Wang, and S. Wang. 2012. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem. Biophys. Res. Commun. 425:121-126. Jin, W., H. Wang, W. Yan, L. Xu, X. Wang, X. Zhao, X. Yang, G. Chen, and Y. Ji. 2008. Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm. 2008:725174. doi: 10.1155/2008/725174. Jung, K. A., and M. K. Kwak. 2010. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15:7266-7291. Kaiser, M. G., J. H. Cheeseman, P. Kaiser, and S. J. Lamont. 2006. Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure to Salmonella enterica serovar Enteritidis. Poult. Sci. 85:1907-1911. Kaiser, P., L. Rothwell, E. E. Galyov, P. A. Barrow, J. Burnside, and P. Wigley. 2000. Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology. 146:3217-3226. Kaiser, P., and P. Stäheli. 2014. Avian Cytokines and Chemokines. Page 189-204 in Avian immunology. K. A. Schat, B. Kaspers and P. Kaiser, ed. Elsevier/Academic Press, Amsterdam, the Kingdom of the Netherlands. Kamada, F., S. Abe, N. Hiratsuka, H. Wariishi, and H. Tanaka. 2002. Mineralization of aromatic compounds by brown-rot basidiomycetes - mechanisms involved in initial attack on the aromatic ring. Microbiology. 148:1939-1946. Kim, J., Y. N. Cha, and Y. J. Surh. 2010. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 690:12-23. Koolhaas, J. M., A. Bartolomucci, B. Buwalda, S. F. de Boer, G. Flügge, S. M. Korte, P. Meerlo, R. Murison, B. Olivier, P. Palanza, G. Richter-Levin, A. Sgoifo, T. Steimer, O. Stiedl, G. van Dijk, M. Wöhr, and E. Fuchs. 2011. Stress revisited: A critical evaluation of the stress concept. Neurosci Biobehav Rev. 35:1291-1301. Korhonen, R., A. Lahti, H. Kankaanranta, and E. Moilanen. 2005. Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy. 4:471-479. Korripally, P., V. Timokhin, C. J. Houtman, M. D. Mozuch, and K. E. Hammel. 2013. Evidence from Serpula lacrymans that 2,5-dimethoxyhydroquinone Is a lignocellulolytic agent of divergent brown rot basidiomycetes. Appl. Environ. Microbiol. 79:2377-2383. Kruidenier, L., and H. W. Verspaget. 2002. Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease--radicals or ridiculous? Aliment. Pharmacol. Ther. 16:1997-2015. Kujala, T. S., J. M. Loponen, K. D. Klika, and K. Pihlaja. 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual Compounds. J. Agric. Food Chem. 48:5388-5342. Kusumoto, C., T. Kinugawa, H. Morikawa, M. Teraoka, T. Nishida, Y. Murawaki, K. Yamada, and T. Matsura. 2010. Protection by exogenously added coenzyme Q9 against free radical-induced injuries in human liver cells. J. Clin. Biochem. Nutr. 46:244-251. Lai, L. P., M. T. Lee, C. S. Chen, B. Yu, and T. T. Lee. 2015. Effects of co-fermented Pleurotus Eryngii stalk residues and soybean hulls by Aureobasidium Pullulans on performance and intestinal morphology in broiler chickens. Poult. Sci. 94:2959-2969. Lara, L. J. and M. H. Rostagno. 2013. Impact of heat stress on poultry production. Animals (Basel). 3:356-369. Latchman, D. S. 1997. Transcription factors: an overview. Int. J. Biochem. Cell Biol. 29:1305-1312. Latorre, J. D., H. Lester, D. Lester, J. B. Blankenship, A. D. Wolfenden, X. Hernandez-Velasco, C. Lester, V. A. Kuttappan, E. A. Vicuna, L. R. Bielke, B. M. Hargis, and G. Tellez. 2014. Improvement of the nutritive value of rye for neonate broiler chickens by direct-fed microbial-induced bacterial translocation and viscosity reduction. Poult. Sci. 93:46. Lazarus, M., K. Yoshida, R. Coppari, C. E. Bass, T. Mochizuki, B. B. Lowell, and C. B. Saper. 2007. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci. 10:1131-1133. Lee, J. H., L. Shu, F. Fuentes, Z. Y. Su, and A. N. T. Kong. 2013. Cancer chemoprevention by traditional Chinese herbal medicine and dietary phytochemicals: targeting Nrf2-mediated oxidative stress/Anti-inflammatory responses, epigenetics, and cancer stem cells. J. Tradit. Complement. Med. 3:69-79. Lee, J. M., and J. A. Johnson. 2004. An important role of Nrf2–ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 37:139-143. Lee, Y. P., W. C. Tsai, C. J. Ko, Y. K. Rao, C. R. Yang, D. R. Chen, M. H. Yang, C. C. Yang, and Y. M. Tzeng. 2012. Anticancer effects of eleven triterpenoids derived from Antrodia camphorata. Anticancer Res. 32:2727-2734. Li, J., T. Lan, C. Zhang, J. Hou, Z. Yang, M. Zhang, J. Liu, and B. Liu. 2015. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget. 6:1031-1048. Liu, Y., J. Wang, L. Li, W. Hu, Y. Qu, Y. Ding, L. Meng, L. Teng, and D. Wang. 2017. Hepatoprotective effects of Antrodia cinnamomea: The modulation of oxidative stress signaling in a mouse model of alcohol-induced acute liver injury. Oxid. Med. Cell Longev. 7841823. https://doi.org/10.1155/2017/7841823. Lin, C. C., L. J. Lin, S. D. Wang, C. J. Chiang, Y. P. Chao, J. Lin, and S. T. Kao. 2014. The effect of serine protease inhibitors on airway inflammation in a chronic allergen-induced asthma mouse model. Mediators Inflamm. 2014:879326. http://dx.doi.org/10.1155/2014/879326. Lu, Z. M., J. Y. Lei, H. Y. Xu, J. S. Shi, and Z. H. Xu. 2011. Optimizationof fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques. Appl. Microbiol. Biotechnol. 92: 371-379. Lu, M. C., M. El-Shazly, T. Y. Wu, Y. C. Du, T. T. Chang, C. F. Chen, Y. M. Hsu, K. H. Lai, C. P. Chiu, F. R. Chang, and Y. C. Wu. 2013. Recent research and development of Antrodia cinnamomea. Pharmacol. Ther. 139:124-156. Lu, M. Y., W. L. Fan, W. F. Wang, T. Chen, Y. C. Tang, F. H. Chu, T. T. Chang, S. Y. Wang, M. Y. Li, Y. H. Chen, Z. S. Lin, K. J. Yang, S. M. Chen, Y. C. Teng, and Y. L. 2014. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. PNAS. 111:E4743-E4752. Ma, T. W., Y. Lai, adn F. C. Yang. 2014. Enhanced production of triterpenoid in submerged cultures of Antrodia cinnamomea with the addition of citrus peel extract. Bioprocess Biosyst. Eng. 37:2251-2261. Mamede, A. C., S. D. Tavares, A. M. Abrantes, J. Trindade, J. M. Maia, and M. F. Botelho. 2011. The role of vitamins in cancer: A review. Nutr. Cancer. 63:479-494. Mancuso, C., and E. Barone. 2009. The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr. Drug Metab. 10:579-594. Mau, J. L., P. N. Huang, S. J. Huang, and C. C. Chen. 2003. Time course for antioxidants production by Antrodia camphorata in submerged culture. Fung. Sci. 18:59-71. Mauldin, J. M. 1992. Application of behavior to poultry manage-ment. Poult. Sci. 71:634-642. Merali, Z., S. R. Collins, A. Elliston, D. R. Wilson, A. Käsper, and K. W. Waldron. 2015. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol. Biofuels. 8:23. doi: 10.1186/s13068-015-0207-1. McDermott, P. F., R. D. Walker, and D. G. White. 2003. Antimicrobials: modes of action and mechanisms of resistance. Int. J. Toxicology. 22:135-143. Mittal, M., M. R. Siddiqui, K. Tran, S. P. Reddy, and A. B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20:1126-1167. Mruk, D. D., B. Silvestrini, M. Y. Mo, and C. Y. Cheng. 2002. Antioxidant superoxide dismutase - a review: its function, regulation in the testis, and role in male fertility. Contraception 65:305-311. Mutch, D. M., W. Wahli, and G. Williamson. 2005. Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J. 19:1602-1616. Navarro, S. L., E. D. Kantor, X. Song, G. L. Milne, J. W. Lampe, M .Kratz, and E. White. 2016. Factors associated with multiple biomarkers of systemic inflammation. Cancer Epidemiol. Biomarkers Prev. 25:521-531. Na, H. K., and Y. J. Surh. 2008. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 46:1271-1278. Nathan, C., and Q. W. Xie. 1994. Nitric oxide synthases: Roles, tolls, and controls. Cell. 78:915-918. Nguyen, T., P. Nioi, and C. B. Pickett. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284:13291-13295. Niki, E. 2014. Antioxidants: basic principles, emerging concepts, and problems. Biomed. J. 37:106-111. NRC. Nutrient Requirements of Poultry, 9th rev. ed.; National Academy Press: Washington, DC, 1994. Nunes, V. A., A. J. Gozzo, I. Cruz-Silva, M. A. Juliano, T. A. Viel, R. O. Godinho, F. V. Meirelles, M. U. Sampaio, C. A. Sampaio, and M. S. Araujo. 2005. Vitamin E prevents cell death induced by mild oxidative stress in chicken skeletal muscle cells. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 141: 225-240. Oeckinghaus, A., M. S. Hayden, and S. Ghosh. 2011. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12:695-708. Onipe, O. O., A. I. O. Jideani, and D. Beswa. 2015. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Tech. 50:2509-2518. Ooi, V. E. C. 2008. Antitumor and immunomodulatory activities of mushroom polysaccharides. Pages 147-198 in Mushrooms as functional foods. Cheung, P. C., ed. John Wiley & Sons, Inc.: Hoboken, NJ, USA. Owuor, E. D., and A.-N. T. Kong. 2002. Antioxidants and oxidants regulated signal transduction pathways. Biochem. Pharmacol. 64:765-770. Paine, A., B. Eiz-Vesper, R. Blasczyk, R, and S. Immenschuh. 2010. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 80:1895-1903. Pandey, A., C. R. Soccol, and C. Larroche. 2008. Production of antibiotics and other commercially valuable secondary metabolites. Page 328-330 in Current developments in solid state fermentation. A. Pandey, M. Fernandes, and C. Larroche, ed. Springer, New Delhi. Pérez, J., T. Muñoz-Dorado de la Rubia, and J. Martínez. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. J. Food Microbiol. 5:53-63. Rath, N. C., N. B. Anthony, L. Kannan, W. E. Huff, G. R. Huff, H. D. Chapman, G. F. Erf, and P. Wakenell. 2009. Serum ovotransferrin as a biomarker of inflammatory diseases in chickens. Poult. Sci. 88:2069-2074. Reczek, C. R., and N. S. Chandel. 2015. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33:8-13. Regnier, J. A., and K. W. Kelley. 1981. Heat- and cold-stress suppresses in vivo and in vitro cellular immune response of chickens. Am. J. Vet. Res. 42:294-299. Reuter, S., S. C. Gupta, M. M. Chaturvedi, and B. B. Aggarwal. 2010. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 49:1603-1616. Rosin, M. P., S. Saad el Din Zaki, A. J. Ward, and W. A. Anwar. 1994. Involvement of inflammatory reactions and elevated cell proliferation in the development of bladder cancer in schistosomiasis patients. Mutat. Res. 305:283-292. ROSS Manual. ROSS Broiler Management Manual. 2014; Aviagen Limited, Midlothian, Scotland, UK. Rubiolo, J. A.; G. Mithieux, and F. V. Vega. 2008. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur. J. Pharmacol. 591:66-72. Rytioja, J., K. Hilden, J. Yuzon, A. Hatakka, R. P. de Vries, and M. R. Makela. 2014. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol. Mol. Biol. Rev. 78:614-649. Sahin, K., C. Orhan, M. Tuzcu, S. Ali, N. Sahin, and A. Hayirli, 2010. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails. Poult. Sci. 89:2251-2258. Sahin, K., C. Orhan, F. Akdemir, M. Tuzcu, S. Ali, and N. Sahin. 2011. Tomato powder supplementation activates Nrf-2 via ERK/Akt signaling pathway and attenuates heat stress-related responses in quails. Anim. Feed Sci. Technol. 165:230-237. Sahin, K., C. Orhan, F. Akdemir, M. Tuzcu, C. Iben, and N. Sahin. 2012a. Resveratrol protects quail hepatocytes against heat stress: modulation of the Nrf2 transcription factor and heat shock proteins. J Anim. Physiol. Anim. Nutr. 96:66-74. Sahin, K., C. Orhan, Z. Tuzcu, M. Tuzcu, and N. Sahin. 2012b. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food Chem. Toxicol. 50:4035-4041. Sahin, K., C. Orhan, M. O. Smith, and N. Sahin. 2013. Molecular targets of dietary phytochemicals for the alleviation of heat stress in poultry. Worlds Poult. Sci. J. 69:113-123. Sánchez, C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27:185-194. Sankar, P., A. G. Telang, and A. Manimaran. 2012. Protective effect of curcumin on cypermethrin-induced oxidative stress in Wistar rats. Exp. Toxicol. Pathol. 64:487-493. SAS Institute. Inc. SAS User's Guide Varsion 8.1; Cary, NC: SAS Institute, 1999. Savage, C. D., G. Lopez-Castejon, A. Denes, and D. Brough. 2012. NLRP3-inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Front. Immunol. 3:288. doi:10.3389/fimmu.2012.00288. Selye, H. 1936. A syndrome produced by diverse nocuous agents. Nature. 138:32-34. Selye, H., 1973. The Evolution of the Stress Concept: The originator of the concept traces its development from the discovery in 1936 of the alarm reaction to modern therapeutic applications of syntoxic and catatoxic hormones. Am. Sci. 61:692-699. Settar, P., S. Yalcin, L. Turkmut, S. Ozkan, and A. Cahanar. 1999. Season by genotype interaction related to broiler growth rate and heat tolerance. Poult. Sci. 78:1353-1358. Shakibaei, M., K. B. Harikumar, and B. B. Aggarwal. 2009. Resveratrol addiction: to die or not to die. Mol. Nutr. Food Res. 53:115-128. Sharma, J. N., A. Al-Omran, and S. S. Parvathy. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 15:252-259. Shi, L., S. E. Smith, N. Malkova, D. Tse, Y. Su, P. H. Patterson. 2009. Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav. Immun. 23:116-123. Shie, P. H., S. Y. Wang, H. L. Lay, and G. J. Huang. 2016. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells. Int. Immunopharmacol. 31:186-194. Shini, S., G. R. Huff, A. Shini, and P. Kaiser. 2010. Understanding stress-induced immunosuppression: Exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes. Poult. Sci. 89:841-851. Sihvo, H. K., K. Immonen, and E. Puolanne. 2014. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. 51:619-623. Simpson, R. J., M. R. Wilson, J. R. Black, J. A. Ross , G. P. Whyte, K. Guy, and G. D. Florida-James. 2005. Immune alterations, lipid peroxidation, and muscle damage following a hill race. Can. J. Appl. Physiol. 30:196-211. Song, T. Y., and G. C. Yen. 2002. Antioxidant properties of Antrodia camphorata in submerged culture. J. Agric. Food Chem. 50:3322-3327. Srivastava, S., N. Pathak, and P. Srivastava. 2011. Identification of limiting factors for the optimum growth of Fusarium Oxysporum in liquid medium. Toxicol. Int. 18:111-116. Stamler, J. S. 1994. Redox signalling: nitrosylation and related target interactions of nitric oxide. Cell. 78:931-936. Surai, P. F. 2002. Antioxidant systems in the animal body. Page 565-605. in Natural antioxidants in avian nutrition and reproduction. Surai, P. F., ed., Nottingham University Press: UK, Nottingham. Surai, P. F. 2006. Selenium in Nutrition and Health. Nottingham University Press, Nottingham, UK. Surai, P. F. 2016. Antioxidant systems in poultry biology: superoxide dismutase. iMedPub. J. Anim. Res. Nutr. 1:1-17. Surai, P. F., and V. I. Fisinin. 2016. Vitagenes in poultry production: Part 3. Vitagene concept development. Worlds Poult. Sci. J. 72:793-804. Swarnabala, S., M. Gattu, B. Perry, Y. Cho, R. F. Lockey, and N. Kolliputi. 2015. ROMO1 links oxidative stress to mitochondrial integrity. J. Cell Commun. Signal. 9:73-75. Tankson, J. D., Y. Vizzier-Thaxton, J. P. Thaxton, J. D. May, and J. A. Cameron. 2001. Stress and nutritional quality of broilers. Poult. Sci. 80:1384-1389. Tellez, G., J. D. Latorre, V. A. Kuttappan, M. H. Kogut, A. Wolfenden, X. Hernandez-Velasco, B. M. Hargis, W. G. Bottje, L. R. Bielke, and O. B. Faulkner. 2014. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet. 5:339. doi:10.3389/fgene.2014.00339. Tew, K. D. 1994. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 54:4313-4320. Tirpanalan, Ö., M. Reisinger, F. Huber, W. Kneifel, and S. Novalin. 2014. Wheat bran biorefinery: an investigation on the starch derived glucose extraction accompanied by pre- and post-treatment steps. Bioresour. Technol. 163:295-299. Tsao, J. C. I. and L. K. Zeltzer. 2005. Complementary and alternative medicine approaches for pediatric pain: a review of the state-of-the-science. J. Evid. Based Complementary Altern. Med. 2:149-159. Thimmulappa, R. K., H. Lee, T. Rangasamy, S. P. Reddy, M. Yamamoto, T. W. Kensler, and S. Biswal. 2006. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116:984-995. Tripathi, P., P. Tripathi, L. Kashyap, and V. Singh. 2007. The role of nitric oxide in inflammatory reactions. FEMS. Immunol. Med. Microbiol. 51:443-452. United States Department of Agricultural, USDA. Livestock and Poultry: World Markets and Trade. April. 2017. https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf. Villas-Bôas, S. G., E. Esposito, and D. A. Mitchell. 2002. Microbial conversion of lignocellulosic residues for production of animal feeds. Anim. Feed Sci. Technol. 98:1-12 Virden, W. S., and M. T. Kidd. 2009. Physiological stress in broilers: Ramifications on nutrient digestibility and responses. J. Appl. Poult. Res. 18:338-347. Wallace, J. L. 2005. Nitric oxide as a regulator of inflammatory processes. Mem. Inst. Oswaldo Cruz. 1000(Suppl. I):5-9. Wang, H. C., F. H. Chu, S. C. Chien, J. W. Liao, H. W. Hsieh, W. H. Li, C. C. Lin, J. F. Shaw, Y. H. Kuo, and S. Y. Wang. 2013. Establishment of the metabolite profile for an Antrodia cinnamomea health food product and investigation of its chemoprevention activity. J. Agric. Food Chem. 61:8556-8564. Wardyn, J. D., A. H. Ponsford, and C. M. Sanderson. 2015. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 43:621-626. Wen, C. L., C. C. Chang, S. S. Huang, C. L. Kuo, S. L. Hsu, J. S. Deng, and G. J. Huang. 2011. Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. J. Ethnopharmacol. 137:575-584. Wigley, P., and P. Kaiser. 2003. Avian cytokines in health and disease. Braz. J. Poultry Sci. 5:1-14. Wu,J., T. Fernandes-Alnemri, and E. S. Alnemri. 2010. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. Immunol. 30:693-702. Xie, H., L. Newberry, F. D. Clark, W. E. Huff, G. R. Huff, J. M. Balog, and N. C. Rath. 2002. Changes in serum ovotransferrin levels in chickens with experimentally induced inflammation and diseases. Avian Dis. 46:122-131. Xing, S., M. Wang, Y. Peng, D. Chen, and X. Li. 2014. Simulated gastrointestinal tract metabolism and pharmacological activities of water extract of Scutellaria baicalensis roots. J. Ethnopharmacol. 152:183-189. Wink, D. A., I. Hanbauer, M. B. Grisham, F. Laval, R. W. Nims, J. Laval, J. Cook, R. Pacelli, J. Liebmann, M. Krishna, P. C. Ford, and J. B. Mitchell. 1996. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr. Top Cell. Regul. 34:159-187. Wu, Y., J. Lu, S. Antony, A. Juhasz, H. Liu, G. Jiang, J. L. Meitzler, M. Hollingshead, D. C. Haines, D. Butcher, K. Roy, and J. H. Doroshow. 2013. Activation of TLR4 is required for the synergistic induction of dual oxidase 2 and dual oxidase A2 by IFN-𝛾 and lipopolysaccharide in human pancreatic cancer cell lines. J. Immunol. 190:1859-1872. Yahav, S., A. Straschnow, D. Luger, D. Shinder, J. Tanny, and S. Cohen. 2004. Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poult. Sci. 83:253–258. Yang, F. C., H. C. Huang, and M. J. Yang. 2003. The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enzyme Microb. Technol. 33:395-402. Yang, F. C., Y. H.Yang, and H. C. Lu. 2013. Enhanced antioxidant and antitumor activities of Antrodia cinnamomea cultured with cereal substrates in solid state fermentation. Biochem. Eng. J. 78:108-113. Yang, X. J., W. L. Li, Y. Feng, and J. H. Yao. 2011. Effects of immune stress on growth performance, immunity, and cecal microflora in chickens. Poult. Sci. 90:2740-2746. Yen, I. C., C. W. Yao, M. T. Kuo, C. L. Chao, C. Y. Pai, and W. L. Chang. 2015. Anti-cancer agents derived from solid-state fermented Antrodia camphorata mycelium. Fitoterapia. 102:115-119. Yu, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74:139-162. Zanetti, F., M. Giacomello, Y. Donati, S. Carnesecchi, M. Frieden, and C. Barazzone-Argiroffo, 2014. Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells. Free Radic. Biol. Med. 76: 173-184.Yu, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74:139-162. Zhang, W., S. Xiao, E. J. Lee, and D. U. Ahn. 2011. Consumption of oxidized oil increases oxidative stress in broilers and affects the quality of breast meat. J. Agric. Food Chem. 59:969-974. Zhang, Z. W., Q. H. Wang, J. L. Zhang, S. Li, X. L. Wang, and S. W. Xu. 2012. Effects of oxidative stress on immunosuppresion induced by selenium deficiency in chickens. Biol. Trace Elem. Res. 149:352-361. Zhou, Q., U. Mrowietz, M. Rostami-Yazdi. 2009. Oxidative stress in the pathogenesis of psoriasis, Free Radic. Biol. Med. 47:891-905. Zuo, Z. Y., W. R. Yang, Y. Wang, Z. B. Yang, S. Z. Jiang, and G. G. Zhang. 2012. Effects of Astragalus membranaceus on laying performance and antioxidant status of laying hens. J. Appl. Poult. Res. 21:243-250.
摘要: 家禽產業中不可避免的有多種多樣的緊迫因子常導致動物的生長及產能表現不佳;因此,本研究期以台灣特有、珍貴且具抗氧化及免疫正向調節之特有食藥用真菌-牛樟芝 (Antrodia cinnamomea) 應用於肉雞飼糧中,使之活化抗氧化機制並抑制發炎路徑之異常擴大作為改善家禽負面影響的潛在防禦方法,並進而探討其中之分子調節機制。本研究分為兩部分進行;預試驗以商業培養製成之牛樟芝菌絲發酵粉末 (solid-state cultured Antrodia cinnamomea mycelial powder, ACP) 為原料進行;而第二部分則利用與預試驗相同之牛樟芝菌株固態發酵麩皮 (wheat bran, WB),試驗最終以16天培養期之產物進行後續試驗 (fermented A. cinnamomea from Wang's lab, FAC)。ACP 及 FAC 中的機能性成分如粗三萜、粗多醣及總酚類化合物含量均初步評估以預先了解潛在的影響。預試驗將 240 隻一日齡白肉雞 (Ross 308) 依平均體重逢機分配至以下四組,分別為基礎飼糧  (Control)中添加 0%、0.1%、0.2% 以及 0.4% 之 ACP,每處理組均有四重複欄,每欄 15 隻雞,試驗共持續 35 日。而第二部分之動物試驗則將 400隻一日齡白肉雞 (Ross 308) 依平均體重逢機分配至以下五組,分別為基礎飼糧 (Control)、以及以 5% WB、10% WB、5% FAC 以及 10% FAC 取代基礎飼糧原料組,試驗同樣維持35日。以試驗全期 (1-35 日齡) 而言,試驗之三種添加組別均較Control有較重之體重。而5% 及 10% FAC 組別則較飼糧中含有 WB 之組別有較重之體增重。此外,迴腸及盲腸大腸桿菌群數在 0.1% 及 0.2% ACP 組較低;而飼糧中含 FAC 組別之大腸桿菌群及乳酸菌數分別受抑制及增加。血液抗氧化酵素-超氧化物岐化酶 (Superoxide dismutase, SOD) 在 21 及 35 天較高,而過氧化酶 (Catalase, CAT) 則在 21 天較對照組佳;以FAC 之兩個組別而言,SOD 活性在35天有顯著較其他組高,CAT 則在 21 及 35 天均顯著提高。FAC部分取代雞隻飼糧原料可使35日齡雞隻之周邊免疫單核球細胞(chicken peripheral blood mononuclear cell, cPBMCs) 在受到Lipopolysaccharide (LPS) 或 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) 刺激下,氧化性物質含量如過氧化氫及一氧化氮有相對較低的結果。此外,cPBMCs中的前列腺素E2 (PGE2) 同樣也在飼糧中含有 ACP抑或FAC 組別較低。mRNA表現在預試驗及第二個試驗分別以cPBMCs及肝臟組織進行分析討論。由Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2)主導之抗氧化基因如Heme Oxygenase 1 (HO-1) 及Glutamate—cysteine ligase catalytic subunit (GCLC)在三組ACP添加組別之35日齡雞隻均顯著提高,而在FAC兩組則以大部分基因均有顯著較高表現的結果。另一方面,由Nuclear factor-κB (NF-κB)主要調節之發炎相關基因如Interleukin 1 beta (IL-1β) 及 IL-6 則在 21及35日齡0.2% ACP 添加組別雞隻之細胞中受抑制;而這樣的結果在第二項試驗中則僅在 35 日齡餵飼含有 FAC 飼糧之雞隻較顯著。Nrf2及 NF-κB 在雞隻肝臟中的蛋白質表現量可支持前述mRNA表現的結果,顯示所有ACP組別均有較高之 Nrf2 表現,而NF-κB則相對受抑制。試驗二更進一步探討兩個轉錄因子之細胞核易位表現,顯示FAC 可促進 Nrf2 並抑制NF-κB易位至細胞核中。綜合此二試驗,較佳的菌相結果顯示ACP 及 FAC 具有改善雞隻免疫調節之潛能。此外,ACP 及 FAC可促進Nrf2 路徑且減緩NF-κB 調控之發炎傳訊路徑。抗氧化酵素及細胞耐受性均在 ACP 及 FAC 組別中顯著改善。同時,ACP 及 FAC潛在之正向作用似乎具有提高雞隻體增重之潛能。
Antrodia cinnamomea, a precious and unique medical fungus existing exclusively in Taiwan, exhibits antioxidant and immunomodulatory properties. This study was divided into two parts, the preliminary study employed a commercial solid-state cultured Antrodia cinnamomea mycelial powder (ACP); and the second part applied the same strain of A. cinnamomea (AC) as the first part to wheat bran (WB) by solid-state fermentation for 16 days (FAC). Both experiments aimed to evaluate the beneficial effects of AC on chickens, and to further illuminate its underlying antioxidant and immunomodulation molecular mechanisms in broilers. The functional compounds of ACP and FAC - crude triterpenoids, crude polysaccharides and total phenolic content - were both assayed at first to evaluate the possible effects of these materials. In the first animal trial, 240 d-old broiler chickens (Ross 308) were assigned to 4 treatment groups receiving diet supplemented with ACP at 0%, 0.1%, 0.2% and 0.4% for 35 days. Each group had four replicate pens, with 15 birds per pen. For the second trial, 400 d-old broiler chickens were allotted into 5 treatment groups fed control diet, and control diet replaced with 5% WB, 10% WB, 5% FAC, and 10% FAC respectively. Regarding the entire experimental period, chickens in the ACP-supplemented groups demonstrated increased body weight gain compared to those had control diet. 5% and 10% FAC inclusion in diet had birds optimal weight gain than those in WB groups. Moreover, cecal and ileal coliform count were decreased in both the 0.1% and 0.2% ACP groups; and cecal coliform and lactic acid bacteria were diminished and increased respectively while diet replaced with FAC. Blood antioxidant potentiality - SOD activity, increased in birds fed ACP supplemented diet at both 21 and 35 day, accompanied by higher CAT activity at 21 day; yet for FAC inclusion in diet, SOD activity rather increased at 35 day only, with CAT elevated at 21 and 35 day. Oxidative species, in terms of H2O2 and NO levels, induced by LPS and AAPH in chicken peripheral blood mononuclear cells (cPBMCs) were compromised in chickens received FAC containing diet. Furthermore, in 35-d-old birds, PGE2 production in cPBMCs was also suppressed while offering ACP and FAC in chicken diet. mRNA expressions were detected in cPBMCs and liver for the first and the second trial respectively. Antioxidant genes dominated by Nrf2, such as HO-1, GCLC, were up-regulated in 35 day-old birds given ACP supplemented diets and mostly in 5% and 10% FAC groups. On the other hand, inflammatory-related genes, like IL-1β and IL-6, ruled mainly by NF-κB, were rather down-regulated by 0.2% ACP addition at 21 and 35 day; for the second trial, these patterns were pronounced at 35 d. Protein expression levels of Nrf2 and NF-κB in chicken liver supported the mRNA results, demonstrating that all the ACP-supplemented groups showed significantly higher Nrf2 expression, whereas the NF-κB was inhibited. Particularly, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. In conclusion, preferable microbial balance may indicate the improvement of immunomodulatory capacity by ACP and FAC. Furthermore, ACP and FAC could induce the Nrf2-dependent pathway and decrease NF-κB dominated inflammatory signaling pathway. Antioxidant and immune capacity in terms of antioxidant enzymes and cell tolerance were also elevated by ACP and FAC. Concomitantly, body weight increased by ACP supplementation and shown commensurate by FAC replacement as comparing with the corresponding control group further implied the promising effects exerted by ACP and FAC.
URI: http://hdl.handle.net/11455/96547
文章公開時間: 2020-08-18
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.