Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96549
標題: 評估菇類廢棄基質青貯料飼糧對荷蘭閹公牛之生長性狀、 瘤胃醱酵與甲烷排放之影響
Evaluation of spent mushroom (Flamulina velutipes) substrate silage-based diets on the growth performance, rumen fermentation, and methane emission in Holstein steers
作者: 明亮
K.Teepalak Rangubhet
關鍵字: -
enteric methane
spent mushroom substrate
silage
protozoa
steer
引用: References Abdullah, N., Khan, A.D., Ejaz, N., 2004. Influence of nutrients carbon and nitrogen supplementation on biodegradation of wheat straw by Trametes versicolor. Micol. Aplicada Int. 16, 7-12. Adamovic, M., Grubic, G., Milenkovic, I., Jovanovic, R., Protic, R., Sretenovic, L., Stoicevic, L., 1998. The biodegradation of wheat straw by Pleurotus ostreatus mushroom and its use in cattle feeding. Anim. Feed Sci. Technol. 71, 357-362. Akinfemi, A., 2010. Bioconversion of peanut husk with white rot fungi Pleurotus ostreatus and Pleurotus pulmonarius. Livest. Res. Rural Develop. 22, http://www.lrrd.org/lrrd22/3/akin22049.htm Akinfemi, A., Ogunwole, O.A., Ladipo, M.K., Adu, O.A., Osineye, O.M., Apata, E.S., 2008. Enhancement of the nutritive value of maize leaf treated with white-rot fungi: Pleurotus sajor caju and Pleurotus pulmonarius, and the effects on chemical composition and in vitro digestibility. Prod. Agric. Technol. 4, 106-114. AOAC. 2000. Official methods of analysis. 17th edn. Association of official analytical chemists: Arlington, VA. Aslam, S., Saifullah, 2013. Organic management of root knot nematodes in tomato with spent mushroom compost. Sarhad J. Agric. 29, 63-69. Beelman, R.B., Royse, D.J., Chikthimmah, N., 2003. Bioactive components in button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae) of nutritional, medicinal and biological importance (review). J. Med.Mush. 5, 321-337. Bhatta, R., Saravanan, M., Baruah, L., Sampath, K.T., Prasad, C.S., 2013. Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. J. Appl. Microbiol. 115, 455-465. Bhatta, R., Saravanan, M., Baruah, L., Prasad, C.S., 2014. Effect of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J. Appl. Microbiol. 118, 557-264. Carberry, A.C., Kenny, D.A., Kelly, A.K., Waters, S.M., 2014. Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets. J. Anim. Sci. Biotechnol. 5, 41. Chang, S.T., Miles, P.G., 2004. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd ed.; Boca Raton, FL, USA: CRC Press. Cieslak, A., Szumacher-Strabel, M., Stochmal, A., Oleszek, W., 2013. Plant components with specific activities against rumen methanogens. Anim.7, 253–265. Cozzi, G., Ravarotto, L., Gottardo, F., Stefaani, A.L., Contiero, B., Moro, L., Brscic, M., Dalvit, P., 2011. Reference values for bloods parameters in Holstein dairy cows: Effect of parity, stage of lactation, and season of production. J. Dairy Sci. 94, 3895-3901. Dehority, B.A., 1993. Laboratory Manual for Classification and Morphology of Ruminal Ciliate Protozoa. (Ed. Press CRC) p. 120. CRC Press, Inc., Boca Raton, FL. Domas, B.T., Watson, W.A., Biggs, H.G., 1971. Albumin standards and the measurement of serum albumin with bromocresol green. Clin. Chim. Acta. 31, 87-96. Eugene, M., Archimede, H., Sauvant, D., 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Sci. 85, 81-97. Fazaeli, H., Masoodi, A.R., 2006. Spent wheat straw compost of Agaricus bisprus mushroom as ruminant feed. Asian. Aust. J. Anim. Sci. 19, 845-851. Fazaeli, H., A. Azizi and M. Amile., 2006. Nutritive value index of treated wheat straw with Pleurotus fungi fed to sheep. Pakistan J. Biol. Sci. 9 (13), 2444-2449. Flack, C.P., Woollen, J.W., 1984. Prevention of interference by dextran with biuret type assay of serum. Clin. Chem. 30, 559-561. Farrance, I., 1987. Plasma glucose methods, a review. Clin. Chem. Rev. 8, 55-68. kaurHarith, N., Abdullah, N., Sabaratnem, V., 2014. Cultivation of Flammulina velutipes mushroom using variation agro-residues as a fruiting substrate. Pesq. Agropec. Bras. 49, 181-188. Hegarty, R.S., 1999. Reducing rumen methane emission through elimination of rumen protozoa. Aust. J. Agric. Res. 50, 1321-1327. Hillman K., Williams, A.G., Lloyd, D., 1995. Postprandial variations in endogenous metabolic activities of ovine rumen ciliate protozoa. Anim. Feed Sci. Technol. 52, 237-247. Horisawa, S., Sunagawa, M., Tamai, Y., Yamashita, K., Miura, T., Terazawa, M., 1999. Biodegradation of nonlignocellulosic substances II: physical and chemical properties of sawdust before and after use as artificial soil. J. Wood Sci. 45, 492-497. Hook, S.E., Wright, A.G., McBride, B.W., 2010. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea, doi:10.1155/2010/945785. Hook, S.E., Steele, M.A., Northwood, K.S., Wright, A.G., McBride, B.W., 2011. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microb. Ecol. 62, 94-105. Huisden, C.M., Adesogan, A.T., Kim, S.C. and Ososanya, T., 2009. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 92, 690–697. Husdan, H., Rapoport, A., 1968. Estimation of creatinine by the Jaffe reaction: a comparison of three methods. Clin. Chem. 14, 222-238. Islam, M., Enishi, O., Purnomoadi, A., Higuhci, K., Takusari, N., Tereda, F., 2001. Energy and protein utilization by goats fed Italian ryegrass silage treated with molasses, urea, cellulase or cellulase + lactic acid bacteria. Small Rumin. Res. 42, 49-60. Janssen, P.H., Kirs, M., 2008. Structure of archaea community of the rumen. Appl. Environ. Microbiol. 74, 3619-3625. Janusz, G., Czurylo, A., Frac, M., Rola, B., Sulej, J., Pawlik, A., Siwulski, M., Rogalski, J., 2015. Laccase production and metabolic diversity among Flammulina velutipes strain. World J. Microbiol. Biotechnol. 31, 121-133. Kachlishvili, E., M. J. Penninckx, N. Tsiklauri and V. Elisashvili., 2005. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidomycetes under solid-state cultivation. World J. Microbiol & Biotechnol. 22 (9), 391-397. Khattaba, I.M., Salemb, A.Z.M., Abdel-Waheda, A.M., Kewana, K.Z., 2013. Effects of urea supplementation on nutrient digestibility, nitrogen utilisation and rumen fermentation in sheep fed diets containing dates. Livest. Sci. J. 155, 223 -229. Kim, M.K., Lee, H.G., Park, J.A., Kang, S.K., Choi, Y.J., 2011. Recycling of fermented sawdust-based oyster mushroom spent substrate as feed supplement for post weaning calves. Asian-Australas. J. Anim. Sci. 24, 493-499. Kim, Y.I., Park, J.M., Lee, Y.H., Lee, M., Choi, D.Y., Kwak, W.S., 2015. Effect of by-product feed-based silage feeding on the performance, blood metabolites, and carcass characteristics of Hanwoo steers. Asian Australas. J. Anim. Sci. 28, 180-187. Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss, W.P., Tricarico, J.M., 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the oppourtunities and impact of reducing emissions. J. Dairy Sci. 97, 3231-7234. Kumar, S., Puniya, A.K., Puniya, M., Daga,r S.S., Sirohi, S.K., Singh, K., Griffith, G.W., 2009. Factors affecting rumen methanogens and methane mitigation strategies. World J. Microbiol. Biotechnol. 25, 1557-1566. Kutlu, H.R., Gorgulu, M., Buyukalaca, S., Baykal, L., Ozcan, N., 2000. Effect of Pleurotus florida inoculation or urea treatment on feeding value of wheat straw. Turk. J. Vet. Anim. Sci. 24, 169-175. Kwak, W.S., Kim, Y.I., Seok, J.S., Oh, Y.K., Lee, S.M., 2009. Molasses and microbial inoculants improve fermentability and silage quality of cotton waste-based spent mushroom substrate. Bioresour. Technol. 100, 1471-1473. Lee, T.T., Huang, C.C., Shich, X.H., Chen, C.L., Chen, L.J., Yu, B., 2010. Flavonoid, phenol and polysaccharide contents of Echinacea Purpurea L. and its immunostimulant capacity in vitro. Int. J. Environ. Sci. Dev. 1, 5-9. Li, X., Peng, Y., Zhang, R., 2001. Composition changes of cottonseed hull substrate during P.Ostreatus growth and the effect on the feeding value of the spent substrate. Bioresour. Technol. 80, 157-161. Li, Z., Wright, A.D.G., Lin, H., Fan, Z., Yang, F., Zhang, Z., Li, G., 2015. Response of the rumen microbiota of Sika deer (Cervus nippon) fed different concentrations of tannin rich plants. PLoS ONE. 10, e0123481. Madrid, J., Martınez-Teruel, A., Hernandez, F. and Megıas, M., 1999. A comparative study on the determination of lactic acid in silage juice by colorimetric, high-performance liquid chromatography and enzymatic methods. J. Sci. Food Agric. 79, 1722–1726. Mangwe, C.M., Rangubhet, K.T., Mlambo, V., Yu, B., Chiang, H.I., 2016. Effect of Lactobacillus formosensis S215T and Lactobacillus bunchneri on quality and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage. J. Appl. Microbiol. 121, 1242-1253. McGinn, S.M., Beauchemin, K.A., Coates, T., Colombatto, D., 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzyme, yeast, and fumaric acid. J. Anim. Sci. 82, 3346-3356. Medina, E., Paredes, C., Pérez-Murcia, M.D., Bustamante, M.A., Moral, R., 2009. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 100, 4227-4232. Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28, 7–55. Milan, J.A., Aleksandra, S.B., Ivanka, M.M., Sneyana, S.S., Adamovia, I.V., 2007. The quality of silage of corn grain and spent P. Ostreatus mushroom substrate. Proc. Natl. Acad. Sci. 113, 211-218. Min, B.R., Attwood, T.T., Reilly, K., Sun, W., Peters, J.S., Barry, T.N., McNabb, W.C., 2002. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can J. Microbiol. 48, 911-921. Mizuno, T.S., 1995. Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Rev. 11, 151-166. Morris, C.A., Cullen, N.G., Upreti, G.C., 1995. Plasma cholesterol and triglyceride concentrations in yearing Angus cattle. Proceed. New Zealand Soc. Anim. Prod. 55, 101-103. Moss, A.R., Jouany, J.P., Newbold, J., 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231-253. Morgavi, D.P., Forano, E., Martin, C., Newbold, C.J., 2010. Microbial ecosystem and methanogenesis in ruminants. Anim. 4, 1024-1036. Mueller-Harvey, I., 2006. Unraveling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86, 2010-2037. Newbold, C.J., Fuent, G., Belanche, A., Ramos-Morales, E., McEwan, N.R., 2015. The role of ciliate protozoa in the rumen. Front. Microbiol. 6, 1313-1321. Nguyen, S.H., Li, L., Hegarty, R.S., 2016. Effect of rumen protozoa of Brahman heifers and nitrate on fermentation and in vitro methane production. Asian-Australs. J. Anim. Sci. 29, 807-813. Oh, Y.K., Lee, W.M., Choi, C.W., Kim, K.H., Hong, S.K., Lee, S.C., Seol, Y.J., Kwak, W.S., Choi, N.J., 2010. Effect of spent mushroom substrates supplementation on rumen fermentation and blood metabolites in Hanwoo steers. Asian-Australs. J. Anim. Sci. 23, 1608-1613. Okano, K., Boonlue, S., Suzuki, Y., 2005. Effect of ammonium hudroxide treatment on the in vitro dry matter digestibility and gas production of wheat straw, sugarcane bagrass medium and konara oak rotted by edible basidiomycetes. Anim. Sci. J. 76, 147-152. Onodera, R., Yamaguchi, H., Eguchi, C., Kandstsu, M., 1977. Limits of survival of the mingled rumen bacteria in the washed cell suspension of rumen ciliate protozoa. Agric. Biol. Chem. 41, 2465- 2466. Ørskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric. Sci. 92, 499– 503. Pal, K., Patra, A.K., Sahoo, A., Kumawat, P.K., 2015. Evaluation of several tropical tree leaves for methane production potential, degradability and rumen fermentation in vitro. Livest. Sci. 180, 98-105. Park, Y.J., Baek, J.H., Lee, S., Kim, C., Rhee, H., Kim, H., Seo, J.S., Park, H.R., Yoon, D.E., Nam, J.Y., Kim, H.I., Kim, J.G., Yoon, H., Kang, H.W., Cho, J.Y., Song, E.S., Sung, G.H., Yoo, Y.B., Lee, C.S., Lee, B.M., Kong, W.S., 2014. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS ONE. 9, e93560. Patra, A.K., Saxena, J., 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminants nutrition. J. Sci. Food Agric. 91, 24-37. Patra, A.K., Min, B.R., Saxena, J., 2012. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In book: Dietary Phytochemicals and Microbes. pp. 237-262. Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8, 13, doi: 10.1186/s40104-017-0145-9. Peng, J.T., 2010. Overview and prospects of edible and medicinal mushrooms: production, consumption, and marketing in Taiwan. International Training Course on Edible Mushroom Production for Asian Farmer and Entrepreneurs November 22-23, 2010 at TARI, Taiwan. Pounden, W.D., 1952. Demonstration of collection of rumen samples for examination. J. Anim. Sci. 67, 2772-2781. Rangubhet, K.T., Fan, Y.K., Hsieh, Y.C., Liu, Y.T., Lu, G.C., Chiang, H.I., 2014. Ligninolytic enzymes produced from Flammulina velutipes cultivation residues as the enhancer of in vitro true digestibility in ruminants. Int. Proc. Chem. Biol. Environ. Eng. 79, 36-40. Rodrigues, M. A. M., P. Pinto, R. M. F. Bezerra, A. A. Dias, C.V. M. Guedes, V. M. G. Cardoso, J. W. Cone, L. M. M. Ferreira, J. Colaco and C. A. Sequeira., 2008. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. and Technol. 141, 326-338. SAS, 2006. SAS user's guide. Version 9.1. SAS Inst., Inc., Cary, NC. USA. Samanta, A.K., Singh, K.K., Das, M.M., Maity, S.B., Kundu, S.S., 2003. Effect of complete feed block on nutrient utilization and rumen fermentation in Barbari goat. Small Rumin. Res. 48, 95-102. Sanchez, C., 2010. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 85, 1321-1337. Sarwar, M., Nisa, M., Hassan, Z., Shahzad, M.A., 2006. Influence of urea molasses treated wheat straw fermented with cattle manure on chemical composition and feeding value for growing buffalo calves. Livest. Sci. 105, 151– 161. Sewell, B.H., 1993. Urea supplements for beef cattle. http://extension.missouri.edu/p/ G2071 Shrivastava, B., P. Nandal, A. Sharma, K. K. Jain, Y. P. Khasa, T. K. Das, V. Mani, N. J. Kewalramani, S. S. Kundu, R. C. Kuhad., 2012. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. Rckk02. Bioresour. Technol. 107, 347-351. Silvana, A., Maria, J.P., Matilde, S., Maria, P.C., 2006. Biodegradation of agro industrial wastes by Pleurotus spp. for its used as ruminant feed. J. Biotechnol. 9, 215-220. Steele, P., Fraser, P., Rasmussen, R., Khalil, M., Conway, T., Crawford, A., Gammon, R., Masarie, K., Thoning, K., 1987. The global distribution of methane in the troposphere. J. Atmos. Chem. 5, 125-130. Streeter, C.L., Conway, K., Horn, G.W., Mader, T.L., 1982. Nutritional evaluation of wheat straw incubated with the edible mushroom, Pleurotus ostreatus. J. Anim. Sci. 54, 183-188. Tamilselvi, N., Krishnamoorthy, P., Dhamotharan, R., Arumugam, P., Sagadevan, E., 2012. Analysis of total phenol, total tannins and screening of phytocomponents in Indigofera aspalathoides (Sivanar Vembu) Vahl EX DC. J. Chem. Pharma. Res. 4, 3259-3262. TARI, 2016. Safe production of mushroom. Innovation technique. www.tari.gov.tw Ushida, K., 2010. Symbioic methanogens and rumen ciliates. Microbiol. Monogr. 19, 25-34. Van Soest, P.J., 2006. Rice straw, the role of silica and treatments to improve quality. 130, 137-171. Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597. Waghorn, G., 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 147, 116-139. Wallace, R.J., Rooke, J.A., Duthie, C.A., Hyslop, J.J., Ross, D.W., McKain, N., Souza, S.M., Snelling, T.J., Waterhouse, A., Roehe, R., 2014. Archaeal abundance in post-morterm ruminal digesta may help predict methane emissions from beef cattle. Sci. Rep. 4, 5892-5899. Weinberg, Z.G., Chen, Y. and Weinberg, P., 2008. Ensiling olive cake with and without molasses for ruminant feeding. Bioresour. Technol. 99, 1526–1529. Xu, C., Cai,Y., Zhang, J., Matsuyama, H., 2010. Feeding value of total mixed ration silage with spent mushroom substrate. Anim. Sci. J. 81, 194-198. Zadrazil, F., Puniya, A.K.P., 1995. Studies on the effect of particle size on solid-state fermentation of sugarcane bagasses into animal feed using white-rot fungi. Bioresour. Technol. 54, 58-87. Zebeli, Q., Tafaj, M., Junck, B., Mansmann, D., Steingass, H., Drochner, W., 2008. Evaluation of the effects of dietary particle fractions on fermentation profile and concentration of microbiota in the rumen of dairy cows fed grass silage-based diets. Arch. Anim. Nutr. 62, 230-240. Zhang, Y., Gao, W., Meng, Q., 2007. Fermentation of plant cell walls by ruminal bacteria, protozoa and fungi and their interaction with fiber particle size. Arch. Anim. Nutr. 61, 114-125.
摘要: -
Direct modification of rumen microbial fermentation could provide universal and cost-effective solutions to reduce methane emissions from ruminant livestock. In this study, nutritive and bioactive values of sawdust-based spent mushroom (golden needle mushroom, Flammulina velutipes) substrate (SMS)-based silage were evaluated and effects of SMS silage-based diet on the growth performance, rumen fermentation and enteric methane emission in Holstein steers were investigated. Spent mushroom substrate and whole crop corn were ensiled for 60 days with or without urea in four recipes as follows: High SMS content without urea (90% SMS and 10% whole crop corn); High SMS content with urea (90% SMS, 1% urea and 9% whole crop corn); Low SMS content without urea (80% SMS and 20% whole crop corn); Low SMS content with urea (80% SMS, 1% urea and 19% whole crop corn) on dry matter (DM) basis. There was improvement on nutritive values in SMS-silage supplemented with urea. Low SMS content with 20% whole crop corn could favor the fermentation of silage. The maximum activity of laccase, lignin peroxidase and manganese peroxidase was found in High-SMS with 1% urea (20.8, 2545, 182 U/L, respectively) throughout the 60 days of fermentation period. Treatment diets that contained high SMS-based silage had higher range of total phenol and tannin (9.63-9.89, 1.96-2.03 mg of GAE/g, respectively) than the low SMS-based silage (9.02-9.22, 1.81-1.89 mg of GAE/g, respectively). SMS level and urea supplementation affected (P < 0.05) the cumulative gas production. High SMS contained in silage without urea could reduce (P < 0.05) gas production. Five dietary treatments were prepared as follows: 1) a control diet made-up of 50% concentrate and 50% bermuda hay (Cynodon dectylon), and 2) four diets formulated by replacing 40% of the bermuda hay in the control diet with the four SMS-based silages described above. Five Holstein steers (mean BW 542 ± 72 kg) were assigned to a 5 × 5 Latin square design and offered the five dietary treatments. The results demonstrated that the digestibility of all nutrients in SMS silage-based diets did not differ from the control diet but there were significantly decreased (P < 0.01) on feed conversion ratio in Holstein steers fed SMS-silage based diets. Nitrogen balance tended to be increased (P = 0.06) in animals fed SMS silage which contained 1% urea. Energy loss as methane energy was reduced (P < 0.05) in animal fed SMS silage-based diet. Holstein steers fed with SMS silage-based diets showed blood characteristics within the normal range as the steers fed control diet. Moreover, results of the rumen fermentation revealed that Holstein steers fed diets containing SMS-based silages had lower total protozoa population (3.75 × 105/mL vs. 6.09 × 105/mL), rumen acetate (55.43 mM/L vs. 57.61 mM/L) and methane emission (211 g/day vs. 252 g/day) (P < 0.05) than Holstein steers fed control diet. When comparing the inclusion levels of SMS-based silages in the diets, cattle fed diets with lower levels of SMS-based silages (80% SMS) had higher acetate contents (56.61 mM/L vs. 54.25), protozoa population (3.92 × 105/mL vs. 2.84 × 105/mL) and methane emission (226 g/day vs. 196 g/day) than animal fed diets with higher levels of SMS-based silage (90% SMS). The study revealed that spent Flamulina velutipes substrate silage can be used as forage source in Holstein steers which shows no significant effect on animal health. Feeding steers SMS-based silage can significantly elevate the balance of energy, hence increase body weight gain as well. This work also supports methane mitigating strategies based on reduction of rumen protozoa populations, and the inhibition of methanogenesis in the rumen probably through the presence of phenolic compounds. The study thus unveiled a novel migration strategy for reducing greenhouse gas production in ruminants using agro-industrial by-products. It is also a possible strategy to replace 20% bermuda hay (DM basis) in rations of Holstein steers to reduce feed cost up to 40 NTD/kg ADG.
URI: http://hdl.handle.net/11455/96549
文章公開時間: 2017-07-31
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.