Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96550
標題: 超音波及胃蛋白酶處理對雞腳膠原蛋白萃取特性之影響
Influences of ultrasound and pepsin extraction on the characteristics of chicken feet collagen
作者: 吳秀晏
Hsiu-Yen Wu
關鍵字: 膠原蛋白
超音波
胃蛋白酶
collagen
pepsin
ultrasound
引用: 林詠凱。2005。雞腳低終端胜肽膠原蛋白之萃取、特性分析及在癒創敷料之應用。博士論文。中興大學。台灣。台中。 莊榮輝。2017。酵素純化與分析 2。http://juang.bst.ntu.edu.tw/EPA/Cindex.htm。 莊榮輝。2004。酵素化學實驗。德臨有限公司。新北市。台灣。 黃榮茂、王禹文、林聖富、楊得仁。1987。化學化工百科辭典。曉園出版社。台北市。台灣。 褚慶環。2007。蛋品加工技術。中國輕工業出版社。北京市。中國。 鄭振東。1999。超音波工程。全華圖書股份有限公司。新北市。台灣。 賴耿陽。2005。超音波工學。台灣復文興業股份有限公司。台南市。台灣。 駱錫能。2012。層析法基本原理與HPLC。宜蘭縣。台灣。 Al-Farga, A., H. Zhang, A. Siddeeg, M. Shamoon, M. V. M. Chamba, and N. Al-Hajj. 2016. Proximate composition, functional properties, amino acid, mineral and vitamin contents of a novel food: alhydwan (Boerhavia elegana Choisy) seed flour. Food Chem. 211:268-273. Alves, T. S. and P. S. H. Ferreira. 2002. Propriedades funcionais de material colagenoso de pés de frango. Arch. Latinoam. Nutr. 52:289-293. Awad, T. S., H. A. Moharram, O. E. Shaltout, D. Asker, and M. M. Youssef. 2012. Applications of ultrasound in analysis, processing and quality control of food:A review. Food Res. Int. 48:410-427. Bächinger, H. P., K. Mizuno, J. A. Vranka, and S. P. Boudko. 2010. Collagen formation and structure. Pages 470-503 in Comprehensive natural products II: chemistry and biology Volume 5, 1st edition. L. Mander, and H. Liu, ed. Elsevier Science, AMS, NL. Bhagwat, P. K., and P. B. Dandge. 2016. Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal. Agric. Biotechnol. 7:234-240. Bilek, S. E., and S. K. Bayram. 2015. Fruit juice drink production containing hydrolyzed collagen. J. Funct. Foods. 14:562-569. Bonjour, J. P. 2005. Dietary protein: An essential nutrient for bone health. J. Am. Coll. Nutr. 24:526-536. Boonmaleerat, K., O. Wanachewin, T. Phitak, P. Pothacharoen, and P. Kongtawelert. 2017. Fish collagen hydrolysates modulate cartilage metabolism. Cell Biochem. Biophys. 1-14. Brodsky, B., and J. A. M. Ramshaw. 1997. The collagen triple-helix structure. Matrix Biol. 15:545-554. Cassel, J. M., and J. R. Kanagy. 1992. Studies on the purification of collagen. J. Res. Nat. Bur. Stand. 42:557-565. Celus, I., K. Brijs, and J. A. Delcour. 2007. Enzymatic hydrolysis of brewers' spent grain proteins and technofunctional properties of the resulting hydrolysates. J. Agric. Food Chem. 55:8703-8710. Chemat, F., N. Rombaut, A. Sicaire, A. Meullemiestre, A. Fabiano-Tixier, and M. Abert-Vian. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34:540-560. Chemat, F., Zill-E-Huma, and M. K. Khan. 2011. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 18:813-835. Chen, J., L. Li, R. Yi, N. Xu, R. Gao, and B. Hong. 2016. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT-Food Sci. Technol. 66:453-459. Cheng, F., F. Hsu, H. Chang, L. Lin, and R. Sakata. 2009. Effect of different acids on the extraction of pepsin-solubilised collagen containing melanin from silky fowl feet. Food Chem. 113:563-567. Chomarat, N., L. Robert, J. L. Seris, and P. Kern. 1994. Comparative efficiency of pepsin and proctase for the preparation of bovine skin gelatin. Enzyme Microbial Technol. 16:756-760. Damrongsakkul, S., K. Ratanathammapan, K. Komolpis, and W. Tanthapanichakoon. 2008. Enzymatic hydrolysis of rawhide using papain and neutrase. J. Ind. Eng. Chem. 14:202-206. Duan, R., J. Zhang, X. Dua, X. Yao, and K. Konno. 2009. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem. 112:702-706. Dutta, P. K., S. Tripathi, G. K. Mehrotra, and J. Dutta. 2009. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 114:1173-1182. El-Rashidya, A. A., A. Gadb, A. E. G. Abu-Husseinc, S. I. Habiba, N. A. Badrd, and A. A. Hashem. 2015. Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen. Int. J. Biol. Macromol. 79:618-626. Eyre, D. R., M. A. Paz, and P. M. Gallop. 1984. Cross-linking in collagen and elastin. Annu. Rev. Biochem. 53:717-748. Ferraro, V., M. Anton, and V. Santé-Lhoutellier. 2016. The 'sisters' α-helices of collagen, elastin and keratin recovered from animal byproducts: functionality, bioactivity and trends of application. Trends Food Sci. Technol. 51:65-75. Ferreira, A. M., P. Gentile, V. Chiono, and G. Ciardelli. 2012. Collagen for bone tissue regeneration. Acta Biomater. 8:3191-3200. Fratzl, P. 2003. Cellulose and collagen: from fibres to tissues. Curr. Opin. Colloid Interface Sci. 8:32-39. Fratzl, P., and R. Weinkamer. 2007. Nature's hierarchical materials. Prog. Mater. Sci. 52:1263-334. Gelse, K., E. Pöschl, and T. Aigner. 2003. Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55:1531-1546. Gómez-Guillén, M. C., B. Giménez, M. E. López-Caballero, and M. P. Montero. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloid. 25:1813-1827. Guillerminet, F., H. Beaupied, V. Fabien-Soule, D. Tome, C. L. Benhamou, C. Roux, and A. Blais. 2010. Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice: An in vitro and in vivo study. Bone.46:827-834. Harlow, E,. and Lane D. 1988. Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, NY, U.S.A. Harper, B. A., S. Barbut, L.-T. Lim, and M. F. Marcone. 2012. Microstructural and textural investigation of various manufactured collagen sausage casings. Food Res. Int. 49:494-500. Hashim, P., M. S. M. Ridzwan, and J. Bakar. 2014. Isolation and Characterization of Collagen from Chicken Feet. World Acad. Sci. Eng. Technol. 8:250-254. Henriksen, K., and M. A. Karsdal. 2016. Chapter 1-Type I Collagen Pages. 1-11 in Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers, 1st edtion. M. A. Karsdal, D. J. Leeming, K. Henriksen, A. Bay-Jensen, ed. Academic Press, CAMB, MA, U.S.A. Horiuchi, T., D. Fukushima, H. Sugimoto, and T. Hattori. 1978. Studies on enzyme-modified proteins as foaming agents: effect of structure on foam stability. Food Chem. 3:35-42. Hu, J., T. Li, X. Liu, and D. Liu. 2016. Seasonal variation of acid-soluble collagens extracted from the swim bladders and skins of bighead carp (Hypophthalmichthys nobilis) and grass carp (Ctenopharyngodon idella). Food Biosci. 15:27-33. Huang, C., J. Kuo, S. Wu, and H. Tsai. 2016. Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion-hydro-extraction process. Food Chem. 190:997-1006. Huda, N., E. Seow, M. N. Normawati, N. M. N. Aisyah, A. Fazilah, and A. M. Easa. 2013. Effect of duck feet collagen addition on physicochemical properties of surimi. Int. Food Res. J. 20:537-544. Iwai, K., T. Hasegawa, Y. Taguchi, F. Morimatsu, K. Sato, Y. Nakamura, A. Higashi, Y. Kido, Y. Nakabo, and K. Ohtsuki. 2005. Identification of food-derived collagen peptides in human blood after oral ingestion of gelatine hydrolysates. J. Agric. Food Chem. 53:6531-6536. Jian, S., T. Wenyi, and C. Wuyong. 2008. Ultrasound-accelerated enzymatic hydrolysis of solid leather waste. J. Clean. Prod. 16:591-597. Jongjareonrak, A., S. Benjakul, W. Visessanguan, and M. Tanaka. 2005. Isolation and characterization of collagen from bigeye snapper (Priacanthus marcracanthus) skin. J. Sci. Food Agric. 85:1203-1210. Jridi, M., S. Bardaa, D. Moalla, T. Rebaii, N. Souissi, Z. Sahnoun, and M. Nasri. 2015. Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. Int. J. Biol. Macromol. 77:369-374. Kadam, S. U., B. K. Tiwari, C. Álvarez, and C. P. O'Donnell. 2015. Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci. Tech. 46:60-67. Kadler, K. E., D. F. Holmes, J. A. Trotter, and J. A. Chapman. 1996. Collagen fibril formation. Biochem. J. 316:1-11. Kern, P., M. Menasehe, and L. Robert. 1991. Relative rates of biosynthesis of collagen type I, type V and type VI in calf cornea. Biochem. J. 274:615-617. Kim, S. H., H. S. Park, O. J. Lee, J. R. Chao, H. J. Park, J. M. Lee, H. W. Ju, B. M. Moon, Y. R. Park, J. E. Song, G. Khang, and C. H. Park. 2016. Fabrication of duck's feet collagen-silk hybrid biomaterial for tissue engineering. Int. J. Biol. Macromol. 85:442-450. Kiosseoglou, V., and A. Paraskevopoulou. 2011. Functional and physicochemical properties of pulse proteins. Pages 57-90 in Pulse Foods Processing, Quality and Nutraceutical Applications, 1st edition. B. Tiwari, A. Gowen, and B. McKenna, ed. Academic Press, CAMB, MA, U.S.A. Koyama, Y., A. Hirota, H. Mori, H. Takahara, K. Kuwaba, M. Kusubata, Y. Matsubara, S. Kasugai, M. Itoh, and S. Irie. 2001. Ingestion of gelatin has differential effect on bone mineral density and body weight in protein undernutrition. J. Nutr. Sci. Vitaminol. 47:84-86. Kristinsson, H. G., and B. A. Rasco. 2000. Biochemical and functional properties of atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agric. Food Chem. 48:657-666. Krochta, J. M., and C. De Minder-Johnston. 1997. Edible and biodegradable polymer films: Challenges and opportunities. Food Technol-Chicago. 51:pp. 61-74. Kumari, M., H. Mahajan, R. Joshi, and M. Gupta. 2017. Development and structural characterization of edible films for improving fruit quality. Food Packaging and Shelf Life. 12:42-50. Kwiatkowska, B., J. Bennett, J. Akunna, G. M. Walker, and D. H. Bremner. 2011. Stimulation of bioprocesses by ultrasound. Biotechnol. Adv. 29:768-780. Lassoued, I., M. Jridi, R. Nasri, A. Dammak, M. Hajji, and M. Nasri. 2014. Characteristics and functional properties of gelatin from thornback ray skin obtained by pepsin-aided process in comparison with commercial halal bovine gelatin. Food Hydrocolloid. 41:309-318. Li, D., C. Mub, S. Cai, and W. Lin. 2009. Ultrasonic irradiation in the enzymatic extraction of collagen. Ultrason. Sonochem. 16:605-609. Li, F., D. Y. Jia, and K. Yao. 2009. Amino acid composition and functional properties of collagen polypeptide from Yak (Bos grunniens) bone. LWT-Food Sci. Technol. 42:945-949. Li, M., X. Li, J. Xin, Z. Li, G. Li, Y. Zhang, M. Du, Q. W. Shen, and D. Zhang. 2017. Effects of protein phosphorylation on color stability of ground meat. Food Chem. 219:304-310. Lin, Y. K., and D. C. Liu. 2006. Effects of pepsin digestion at different temperatures and times on properties of telopeptide-poor collagen from bird feet. Food Chem. 94:621-625. Liu, D. C., Y. K. Lin, and M. T. Chen. 2001. Optimun condition of extracting collagen from chicken feet and its characteristics. Asian Austral. J. Anim. 14:1638-1644. Malone, J. P., K. Alvares, and A. Veis. 2005. Structure and assembly of the heterotrimeric and homotrimeric C-propeptides of type I collagen: significance of the α2 (I) chain. Biochem. 44:15269-15279. Mark, K. V. D. 2006. Structure, biosynthesis and gene regulation of collagens in cartilage and bone. Pages 3-40 in Dynamics of bone and cartilagemetabolism, 2nd edition. M. J. Seibel, S. P.Robins, and J. P. Bilezikian, ed. Academic Press, CAMB, MA, U.S.A. Masiri, J., L. Benoit, B. Barrios-Lopez, C. Thienes, M. Meshgi, A. Agapov, A. Dobritsa. C. Nadala, and M. Samadpour. 2016. Development and validation of a rapid test system for detection of pork meat and collagen residues. Meat Sci. 121:397-402. Miller, K. S., and J. M. Krochta. 1997. Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci. Tech. 8:228-237. Morimura, S., H. Nagata, Y. Uemura, A. Fahmi, T. Shigematsu, and K. Kida. 2002. Development of an effective process for utilization of collagen from livestock and fish waste. Process Biochem. 37:1403-1412. Moskowitz, R. 2000. Role of collagen hydrolysate in bone and joint disease. Semin. Arthritis Rheu. 30:87-99. Nagai, T., and N. Suzuki. 2002. Preparation and partial characterization of collagen from paper nautilus (Argonauta argo, Linnaeus) outer skin. Food Chem. 76:149-153. Nagai, T., E. Yamashita, K. Taniguchi, N. Kanamori, and N. Suzuki. 2001. Isolation and characterization of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chem. 72:425-429. Nalinanon, S., S. Benjakul, W. Visessanguan, and H. Kishimura. 2008. Improvement of gelatin extraction from bigeye snapper skin using pepsin-aided process in combination with protease inhibitor. Hydrocolloid. 22: 615-622. Nalinanon, S., S. Benjakul, W. Visessanguan, and H. Kishimura. 2007. Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chem. 104:593-601. Nazari, B., M. A. Mohammadifar, S. Shojaee-Aliabadi, E. Feizollahi, and L. Mirmoghtadaie. 2018. Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrason. Sonochem. 41:382-388. Nielsen, P. K., and B. Foltmann. 1995. Purification and characterization of porcine pepsinogen B and pepsin B. Arch. Biochem. Biophys. 322:417-422. Niyibizi, C., and D. R. Eyre. 1994. Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. Eur J. Biochem. 224:943-950. Nomura, Y., H. Sakai, Y. Ishii, and K. Shirai. 1996. Preparation and Some Properties of Type I Collagen from Fish Scales. Biosci. Biotech. Bioch. 60:2092-2094. Northrop, J. H. 1930. Crystalline pepsin. I. Isolation and tests of purity. J. Gen. Physiol. 13:739-766 Norziahn, M. H., H. Y. Kee, and M. Norita. 2014. Response surface optimization of bromelain-assisted gelatin extraction from surimi processing wastes. Food Biosci. 5:9-18. Oechsle, A. M., D. Akgün, F. Krause, C. Maier, M. Gibis, R. Kohlus, and J. Weiss. 2016. Microstructure and physical-chemical properties of chicken collagen. Food Struct. 7:29-37. Oechsle, A. M., X. Wittmann, M. Gibis, R Kohlus, and J. Weiss. 2014. Collagen entanglement influenced by the addition of acids. Eur. Polym. J. 58:144-156. Ohara, H., K. Ito, H. Iida, and H. Matsumoto. 2009. Improvement in the moisture content of the stratum corneum following 4 weeks of collagen hydrolysate ingestion. J. Jpn. Soc. Food Sci. 56:137-145. Ojha, K. S., D. Granato, G. Rajuria, F. J. Barba, J. P. Kerry, and B. K. Tiwari. 2018. Application of chemometrics to assess the influence of ultrasound frequency, Lactobacillus sakei culture and drying on beef jerky manufacture: Impact on amino acid profile, organic acids, texture and colour. Food Chem. 239:544-550. Pal, G. K., and P .V. Suresh. 2016. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innov. Food Sci. Emerg. 37:201-215. Pal, G. K., and P. V. Suresh. 2017. Physico-chemical characteristics and fibril-forming capacity of carpswim bladder collagens and exploration of their potential bioactivepeptides by in silico approaches. Int. J. Biol. Macromol. 101:304-313. Park, J., J. Choe, H. Kim, K. Hwang, D. Song, E. Yeo, H. Kim, Y. Choi, S. Lee, and C. Kim. 2013. Effects of various extraction methods on quality characteristics of duck feet gelatin. Korean J. Food Sci. An. 33:162-169. Pati, F., B. Adhikari, and S. Dhara. 2010. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresource Technol. 101:3737-3742. Pitpreecha, S., and S. Damrongsakkul. 2006. Hydrolysis of raw hide using proteolytic enzyme extracted from papaya latex. Korean J. Chem. Eng. 23:972-976. Prockop, D. J., A. L. Sieron, and S. Li. 1998. Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and celt signaling. Matrix Biol. 16:399-408. Quereshi, S., A. Mhaske, D. Raut, R. Singh, A. Mani, and J. Patel. 2010. Extraction and partial characterization of collagen from different animal skins. Sci. Technology. 2:28-31. Rana, X., and L. Wang. 2014. Use of ultrasonic and pepsin treatment in tandem for collagen extraction from meat industry by-products. J. Sci. Food Agric. 94(3):585-90. Reddy, G. K., and C. S. Enwemeka. 1996. A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues. Clin. Biochem. 29:225-229. Ricard-Blum, S. 2011. The Collagen Family. Cold Spring Harb. Perspect. Biol. 3:1-19. Rochid, A., L. Foucat, and J. P. Renou. 1999. Effect of thermal denaturation on water-collagen interactions: NMR relaxation and differential scanning calorimetry analysis Biopolymers. 5:690-696 Rousselot. 2009. Hydrolyzed collagen and skin health 2009 clinical studies results. http://www.mardanti.nl/shop/files/pdf/Peptan_beauty%20science%20leaflet_english.pdf Ruiz-Benito, P., M. Camacho-Zambrano, J. N. Carrillo-Arcentales, M. A. Mestanza-Peralta, C. A. Vallejo-Flores, S. V. Vargas-Lopez, R. A. Villacis-Tamayo, and L. A. Zurita-Gavilanes. 2009. A randomized controlled trial on the efficacy and safety of a food ingredient, collagen hydrolysate, for improving joint comfort. Int. J. Food Sci. Nutr. 12:1-15. Ryle, A. P., and R. R. Porter. 1959. Parapepsins: two proteolytic enzymes associated with porcine pepsin. Biochem. J. 73:75-86. Saito, M., and K. Marumo. 2010. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 21:195-214. Saito, M., and K. Marumo. 2010. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 21:195-214. Schmitt, C., C. Sanchez, S. Desobry-Banon, and J. Hardy. 1998. Structure and techno-functional properties of protein-polysaccharide complexes: A review. Crit. Rev. Food Sci. 38:689-753. Shukla, T. P. 1992. Microwave ultrasonics in food processing. Cereal. Food World. 37:332-333. Siegrist, M. 2008. Factors influencing public acceptance of innovative food technologies and products. Trends Food Sci. Tech. 19:603-608. Sikorski, Z. E. 2001. Functional properties of proteins in food systems. Pages 113-136 in Chemical and Functional Properties of Food Proteins. Z. E. Sikorski, ed. CRC press, Boca Raton, FL, U.S.A. Simpson, R. J., and M. R. Neuberger. 1976. Complete amino acid analysis of proteins from a single hydrolysate. J. Biol. Chem. 251:1936-1940. Skierka, E., and M. Sadowska. 2007. The influence of different acids and pepsin on the extractability of collagen from the skin of Baltic cod (Gadus morhua). Food Chem. 105:1302-1306. Soria, A. C., and M. Villamiel. 2010. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci. Technol. 21:323-331. Souissi, N., M. Jridi, R. Nasri, R. B. Slama, M. Njeh, and M. Nasri. 2016. Effects of the edible cuttlefish gelatin on textural, sensorial and physicochemical quality of octopus sausage. LWT-Food Sci. Technol. 65:18-24. Tanaka, M., Y. Koyama, and Y. Nomura. 2009. Effects of collagen peptide ingestion on UV-B-Induced skin damage. Biosci. Biotechnol. Biochem. 73:930-932. Tang, J. 2013a. Chapter 3-Pepsin A. Pages 27-35 in Handbook of Proteolytic Enzymes Volume 1, 3rd edition. N. D. Rawlings, and G. Salvesen, ed. Academic Press, CAMB, MA, U.S.A. Tang, J. 2013b. Chapter 7-Gastricsin. Pages 49-54 in Handbook of Proteolytic Enzymes Volume 1. 3rd edition. N. D. Rawlings, and G. Salvesen, ed. Academic Press, CAMB, MA, U.S.A. Tharanathan, R. N. 2003. Biodegradable films and composite coatings: Past, present and future. Trends Food Sci. Tech. 14:71-78. Tian, Z. M., M. X. Wan, S. P. Wang, J. Q. Kang. 2004. Effects of ultrasound and additives on the function and structure of trypsin. Ultrason. Sonochem. 11:399-404. Turgeon, S. L., S. F. Gauthier, and P. Paquin. 1992. Emulsifying properties of whey peptide fractions as a function of pH and ionic strength. J. Food Sci. 57:601-604. Walrand, S., E. Chiotelli, F. Noirt, S. Mwewa, and T. Lassel. 2008. Consumption of a functional fermented milk containing collagen hydrolysate improves the concentration of collagen-specific amino acids in plasma. J. Agric. Food Chem. 56:7790-7795. Wang, J., Y. Cao, B. Sun, C. Wang, and Y. Mo. 2011. Effect of ultrasound on the activity of alliinase from fresh garlic. Ultrason. Sonochem. 18:534-540. Wang, L., Q. Liang, T. Chen, Z. Wang, J. Xu, and H. Ma. 2014. Characterization of collagen from the skin of Amur sturgeon (Acipenser schrenckii). Food Hydrocolloid. 38:104-109. Wang, W., Y. Zhang, R. Ye, and Y. Ni. 2015. Physical crosslinkings of edible collagen casing. Int. J. Biol. Macromol. 81:920-925. Wang, Z., S. Hu, Y. Gao, C. Ye, and H. Wang. 2017. Effect of collagen-lysozyme coating on fresh-salmon fillets preservation. LWT-Food Sci. Technol. 75:59-64. Yata, M., C. Yoshida, S. Fujisawa, S. Mizuta, and R. Yoshinaka. 2001. Identification and characterization of molecular species of collagen in fish skin. J. Food Sci. 66:247-251. Yousefi, M., F. Ariffin, and N. Huda. 2017. An alternative source of type I collagen based on by-product with higher thermal stability. Food Hydrocolloid. 63:372-382. Yu, M., M. Zeng, F. Qin, Z. He, and J. Chen. 2017. Physicochemical and functional properties of protein extracts from Torreya grandis seeds. Food Chem. 227:453-460. Yu, Z., W. Zeng, W. Zhang, X. Liao, and B. Shi. 2014. Effect of ultrasound on the activity and conformation of a-amylase, papain and pepsin. Ultrason. Sonochem. 21:930-936. Zhang, Z., G. Li, and B. Shi. 2006. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leath. Tech. Ch. 90:23-28. Zhou, C., Y. Li, X. Yu, H. Yang, H. Ma, A. E. A. Yagoub, Y. Cheng, J. Hu, and P. N. Y. Otu. 2016. Extraction and characterization of chicken feet soluble collagen. LWT-Food Sci. Technol. 74:145-153. Zou, Y., L. Wang, P. Cai, P. Li, M. Zhang, Z. Sun, C. Suna, W. Xu, and D. Wang. 2017a. Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash. Int. J. Biol. Macromol. 105:1602-1610. Zou, Y., L. Wang, P. Li, P. Cai, M. Zhang, Z. Sun, C. Sun, Z. Geng, W. Xu, X. Xu, and D. Wang. 2017b. Effects of ultrasound assisted extraction on the physiochemical, structural and functional characteristics of duck liver protein isolate. Process Biochem. 52:174-182. Zou, Y., W. Wang, Q. Li, Y. Chen, D. Zheng, Y. Zou, M. Zhang, T. Zhao, G. Mao, W. Feng, X. Wu, and L. Yang. 2016. Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasoundprocessing. Process Biochem. 51:431-443.
摘要: 膠原蛋白為動物結締組織中主要之結構蛋白,約佔脊椎動物總蛋白質之30%,在皮膚、腱、硬骨及軟骨等中具有獨特之生理功能。雞腳為常見之動物副產物,含有相當豐富之膠原蛋白含量。膠原蛋白之特性會因為原料、酸液種類及濃度、萃取溫度及時間等萃取條件而有所差異。常見之萃取方法可利用酵素輔助膠原蛋白之酸水解,另一方面,也可利用超音波具有之空洞作用 (cavitation) 產生之強大衝擊力,進而達到更佳之萃取效果,故本報告旨在探討添加5%之胃蛋白酶 (pepsin) 及8小時之超音波處理 (28khz, 600W) 對於以0.5 M醋酸萃取之雞腳膠原蛋白特性之影響,試驗中共分為酸萃取組 (C)、胃蛋白酶處理組 (P)、超音波處理組 (U) 以及胃蛋白酶與超音波處理組 (PU) 等4組。 結果顯示:雞腳之一般成分中,含有53.46%水分、22.70%粗蛋白、16.75%粗脂肪及7.21%灰分。膠原蛋白產率方面,P組、U組及PU組皆顯著高於C組 (P<0.05),此結果說明膠原蛋白酸萃取經過胃蛋白酶或超音波處理皆可增加產率,PU組最高產率則說明兩者共同應用時更能提升產率。膠原蛋白含量方面,P組、U組及PU組之膠原蛋白濃度皆顯著下降 (P<0.05),尤以PU組下降幅度最大,顯示胃蛋白酶處理或超音波處理皆會造成膠原蛋白之濃度下降。水解胺基酸組成方面,經超音波處理之膠原蛋白中,甘胺酸 (glycine)、脯胺酸 (proline) 及羥脯胺酸 (hydroxyproline) 含量皆高於未經超音波處理之組別;胃蛋白酶處理則對胺基酸組成無太大之影響。電泳方面,超音波處理會造成部分膠原蛋白之結構改變,胃蛋白酶處理則會造成部分膠原蛋白之三聚體降解。顏色方面,超音波處理對膠原蛋白之L*值、a*值及b*值無顯著影響 (P>0.05);胃蛋白酶處理會顯著降低膠原蛋白樣品之L*值,但造成a*值與b*值顯著上升 (P<0.05)。吸水力方面,C組與U組相比以及P組與PU組相比皆有顯著差異 (P<0.05),顯示超音波處理對膠原蛋白樣品之吸水力有顯著提升之效果。保水力及吸油力方面,添加酵素及超音波處理皆對膠原蛋白樣品之保水力及吸油力無顯著影響 (P>0.05)。起泡力方面,C組與P組相比以及U組與PU相比皆有顯著差異 (P<0.05),顯示胃蛋白酶處理顯著地降低膠原蛋白樣品之起泡力。起泡穩定性方面,C組與P組相比以及U組與PU相比皆有顯著差異 (P<0.05),胃蛋 白酶處理會顯著降低酸萃取膠原蛋白樣品之起泡穩定性。綜上所述,由本試驗結果顯示,膠原蛋白酸萃取過程中使用超音波處理或添加胃蛋白酶皆能增加產率,超音波處理則會使酸萃取膠原蛋白之吸水力上升,同時亦能夠維持其他特性,但添加胃蛋白酶可能會造成總膠原蛋白含量降低、膠原蛋白顏色改變、起泡力及起泡穩定性下降之情況。根據產量及總膠原蛋白含量之結果,胃蛋白酶及超音波皆適用於促進雞腳膠原蛋白之萃取,然而胃蛋白酶萃取可能會造成部分功能特性下降,故建議酸萃取搭配超音波能夠得到功能特性較佳之膠原蛋白。
Collagen is the main structural protein in animal connective tissue, accounting for about 30% of the total protein in vertebrates. It has unique physiological functions in skin, tendon, hard bone and cartilage. Chicken feet are common animal by-products, which contain rich collagen content. Characteristics of collagen vary with raw materials, acid types, acid concentrations, extraction temperatures and extraction time, and so on. Enzymes are commonly applied to aid the extraction of acid hydrolysis of collagen. On the other hand, ultrasonication has been applied to enhance the extraction through the cavitation mechanism. Therefore, this study was aimed to investigate the influences of pepsin (5%) and ultrasound treatment (8 h, 28 kHz, 600W) on the characteristics of chicken feet collagen extracted using 0.5 M acetic acid. There were four different treatments in this study, including acid extraction treatment (C), pepsin treatment (P), ultrasound treatment (U) and pepsin & ultrasound treatment (PU). The results showed that the chemical composition of chicken feet contained 53.46% moisture, 22.70% crude protein, 16.75% crude fat and 7.21% ash. The collagen yields of P, U and PU were significantly higher than that of C (P<0.05). The result illustrates that pepsin or ultrasound treatment increased the yield of collagen, while the combination of pepsin or ultrasound treatment resulted in the more increased yield of collagen. The collagen concentrations of P, U and PU were significantly decreased (P<0.05), especially PUS had the largest decline, thus indicating pepsin or ultrasound treatment resulted in the decreased concentration of collagen. For the hydrolyzed amino acid composition, the collagen treated with ultrasound had higher levels of glycine, proline and hydroxyproline than those of the control, while less influences was observed due to the pepsin treatment. The SDS-PAGE showed that ultrasound altered the structures of collagens while pepsin treatment might be degraded the trimer structures of collagens. There was no significant difference between the L*, a* and b* values of ultrasonic treated samples (P>0.05). Pepsin-treated samples had significantly lower P* values and higher a* and b* values (P<0.05). Significantly higher water absorption of U than that of C as well as significantly higher water absorption of PU than that of P illustrate ultrasound treatment could enhance the water absorption of samples (P<0.05). Pepsin and ultrasound treatments had no significant influence on the water holding capacity and oil absorption of the acid-extracted collagens (P>0.05). Significantly lower foam ability of P than that of C as well as significantly lower foam ability of PU than that of U indicated that pepsin treatment significantly reduced the foaming ability of acid-extracted collagen (P<0.05). Significantly lower foaming stability of P than that of C as well as significantly lower foaming stability of PU than that of U indicated that pepsin treatment significantly reduced the foaming stability of acid-extracted collagen (P<0.05). In summary, pepsin treatment and ultrasound treatment could increase the yield of collagen. Ultrasound treatment increased water absorption of samples while maintained other properties, while the addition of pepsin might result in a lower collagen content, color changes, and decreased foaming ability and foaming stability. Base on the yield and collagen content of samples, pepsin and ultrasound are applicable to increase the collagen extraction from chicken feet. On the other hand, pepsin treatment might result in some functional properties decline. Therefore, acid with ultrasonic treatment is suggested to obtain collagen with better functional properties.
URI: http://hdl.handle.net/11455/96550
文章公開時間: 10000-01-01
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.