Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96552
標題: 酪胺酸酶基因變異與情侶鸚鵡隱性白羽之關係
Mutations on the tyrosinase gene are associated with recessive white in lovebirds
作者: 葉筱榆
Hsiao-Yu Yeh
關鍵字: 酪胺酸酶
情侶鸚鵡
隱性白
分子標記
等位基因
Tyrosinase
Lovebird
Recessive white
Molecular marker
Allele
引用: References Abel E. L. 2008. Parrots are 'more human' than chickens. Psychol Rep. 102(1): 271–272. Agarwal, S. and A. Ojha. 2012. Piebaldism: A brief report and review of the literature. Indian Dermatol. Online J. 3(2): 144–147. Alberts, B., A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter. 2007. Molecular biology of the cell. 5th ed. New York: Garland Science. Appleyard, V. 2001. The lovebird handbook. New York: Barron's Educational Series. Beermann, F., S. J. Orlow, and M. L. Lamoreux. 2004. The Tyr (albino) locus of the laboratory mouse. Mamm. Genome 15: 749–758. Bennett, D. C. and M. L. Lamoreux. 2003. The color loci of mice – a genetic century. Pigment Cell Res. 16: 333–334. Bennett, D. C., D. Huszar, P. J. Laipis, R. Jaenisch, and I. J. Jackson. 1990. Phenotypic rescue of mutant brown melanocytes by a retrovirus carrying a wild-type tyrosinase-related protein gene. Development 110: 471–475. Biswas, S. and I. C. Lloyd. 1999. Oculocutaneous albinism. Arch. Dis. Child 80: 565–569. Borovansk´y, J. 2011. 'History of melanosome research,' in melanins and melanosomes: biosynthesis, biogenesis, physiological, and pathological functions, J. Borovansk´y and P. A. Riley, eds. Wiley-VCH Verlag GmbH & Co. KGaA, 1st edition. Bromberg, Y., G. Yachdav, and B. Rost. 2008. SNAP predicts effect of mutations on protein function. Bioinformatics 24(20): 2397–2398. Broude, N. E., L. Zhang, K. Woodward, D. Englert, and C. R. Cantor. 2001. Multiplex allele-specific target amplification based on PCR suppression. Proc. Natl. Acad. Sci. U. S. A. 98(1): 206–211. Brown, T. A. 2002. Genomes. 2nd ed. New York: Garland Science. Carroll, S. B., J. K. Grenier, and S. D. Weatherbee. 2001. From DNA to diversity: Molecular genetics and the evolution of animal design. Oxford, United Kingdom: Blackwell. Chang, C. M., J. L. Coville, G. Coquerelle, D. Gourichon, A. Oulmouden, and M. Tixier-Boichard. 2006. Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens. BMC Genomics 7: 19. Clancy, S. 2008. Genetic mutation. Nature Education 1(1): 187. Cooper, D. N. and M. Krawczak. 1989. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet. 83: 181–188. Costin, G. and V. J. Hearing. 2007. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 21: 976–994. Crossland, A. C. 2012. A second albinistic spotted shag (Stictocarbo punctatus) in 116 years. Notornis 59: 82–84. D'Angieri, A. 1997. Colored atlas of lovebirds. New Jersey: TFH Publications. Damé, M. C., G. M. Xavier, J. P. Oliveira-Filho, A. S. Borges, H. N. Oliveira, F. Riet-Correa, and A. L. Schild. 2012. A nonsense mutation in the tyrosinase gene causes albinism in water buffalo. BMC Genet. 20(13): 62. Darias M. J., K. B. Andree, A. Boglino, I. Fernández, A. Estévez, and E. Gisbert. 2013. Coordinated regulation of chromatophore differentiation and melanogenesis during the ontogeny of skin pigmentation of solea senegalensis (Kaup, 1858). PLoS One. 8(5): e63005. Dupin, E. and N. M. L. Douarin. 2003. Development of melanocyte precursors from the vertebrate neural crest. Oncogene 22: 3016–3023. Eberhard, J. R. 1998. Evolution of nest-building behavior in Agapornis parrots. The Auk 115(2): 455–464. Ferguson, C. A. and S. H. Kidson. 1997. The regulation of tyrosinase gene transcription. Pigment Cell Res. 10(3): 127–138. Forshaw, J. M. and F. Knight. 2010. Parrots of the world. Victoria, Australia: CSIRO Publishing. Fox, H. M. and G. Vevers. 1960. The nature of animal colours. New York: Macmillan. Fridolfsson, A. K. and H. Ellegren. 1999. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 20: 116–121. Gasteiger E., A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, and A. Bairoch. 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31(13): 3784–8. Gertz, E. M., Y. K. Yu, R. Agarwala, A. A. Schäffer, and S. F. Altschul. 2006. Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST. BMC Biol. 4: 41. Ghodsinejad Kalahroudi, V., B. Kamalidehghan, A. Arasteh Kani, O. Aryani, M. Tondar, F. Ahmadipour, L. Y. Chung, and M. Houshmand. 2014. Two novel tyrosinase (TYR) gene mutations with pathogenic impact on oculocutaneous albinism type 1 (OCA1). PLoS One 9(9): e106656. Giebel, L. B., K. M. Strunk, and R. A. Spritz. 1991. Organization and nucleotide sequences of the human tyrosinase gene and a truncated tyrosinase-related segment. Genomics 9: 435–445. Griesemer, J. 2000. The units of evolutionary transition. Selection 1(3): 67–80. Griffiths, A. J. F., S. R. Wessler, S. B. Carroll, and J. Doebley. 2000. An introduction to genetic analysis. 7th ed. New York: W. H. Freeman. Gr?nskov, K., J. Ek, and K. Brondum-Nielsen. 2007. Oculocutaneous albinism. Orphanet J. Rare Dis. 2: 43. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98. Hearing, V. J. and K. Tsukamoto. 1991. Enzymatic control of pigmentation in mammals. FASEB J. 5(14): 2902–2909. Hill G. and K. J. McGraw. 2006. Bird coloration. Cambridge, MA: Harvard University Press. Hoekstra, H. E. 2006. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97: 222–234. Hu, T. and W. Banzhaf. 2008. Nonsynonymous to synonymous substitution ratio ka/ks: Measurement for rate of evolution in evolutionary computation. Department of Computer Science, Memorial University of Newfoundland, Canada. Hudon, J. 2005. Considerations in the conservation of feathers and hair, particularly their pigments. In: M. Brunn and J. Burns, eds. Fur Trade Legacy: The preservation of organic materials, canadian association for conservation of cultural property, 17–18 May, 2005. Jasper, Canada, pp 127–147. Hurst, L. D. 2002. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 18(9): 486–487. Iozumi, K., G. E. Hoganson, R. Pennella, M. A. Everett, and B. B. Fuller. 1993. Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes. J. Invest. Dermatol. 100(6): 806–811. Ito, S. 2003. A chemist's view of melanogenesis. Pigment Cell Res. 16: 230–236. Ito, S. and K. Wakamatsu. 2008. Chemistry of mixed melanogenesis pivotal -- roles of dopaquinone. J. Photochem. Photobiol. Biol. 84: 582–592. Ito, S., K. Wakamatsu, and H. Ozeki. 2000. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res. 13: 103–109. Jiménez, M., K. Tsukamoto, and V. J. Hearing. 1991. Tyrosinases from two different loci are expressed by normal and by transformed melanocytes. J. Biol. Chem. 266(2): 1147–1156. Jorge, W. and L. M. Cunha. 2008. Inheritance of a new albino mutation in Brazilian free-range black chickens. Rev. Bras. Cienc. Avic. 10: 3. Joseph L., A. Toon, E. E. Schirtzinger, T. F. Wright, and R. Schodde. 2012. A revised nomenclature and classification for family-group taxa of parrots (Psittaciformes). Zootaxa 3205: 26–40. Jukes T. H. and C. R. Cantor. 1969. Evolution of protein molecules. New York: Academic Press. Kinoshita, S. and S. Yoshioka. 2005. Structural colors in nature: The role of regularity and irregularity in the structure. Chemphyschem 6(8): 1442–1459. Kunisada, T., H. Yamazaki, and S. I. Hayashi. 2001. Review: Ligands for receptor tyrosine kinases expressed in the skin as environmental factors for melanocyte development. 2001. J. Investig. Dermatol. Symp. Proc. 6(1): 6–9. Li, Z., Y. Huang, Y. Ouyang, Y. Jiao, H. Xing, L. Liao, S. Jiang, Y. Shao, and L. Ma. 2014. CorMut: An R/Bioconductor package for computing correlated mutations based on selection pressure. Bioinformatics 30(14): 2073–2075. Librado P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25(11): 1451–1452. Lodish, H., A. Berk, L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. 1999. Molecular cell biology. 4th ed. Oxford, England: W. H. Freeman. Loewe, L. and W. G. Hill. 2010. The population genetics of mutations: good, bad and indifferent. Phil. Trans. R. Soc. B 365: 1153–1167. Lo´pez-Bigasa, N., B. Audita, C. Ouzounisa, G. Parrab, and R. Guigo´. 2005. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett. 579: 1900–1903. Lucas, A. M. and P. R. Stettenheim. 1972. Avian anatomy – integument. U.S. department of agriculture; Washington D.C. Mahler, B., L. S. Araujo, and P. L. Tubaro. 2003. Dietary and sexual correlates of carotenoid pigment expression in dove plumage. The Condor 105(2): 258–267. Makpol, S., N. N. M. Arifin, Z. Ismail, C. K. Hui, Y. A. M. Yusof, and W. Z. W. Ngah. 2009. Modulation of melanin synthesis and its gene expression in skin melanocytes by palm tocotrienol rich fraction. Afr. J. Biochem. Res. 3(12): 385–392. Martínez-Arias, R., F. Calafell, E. Mateu, D. Comas, A. Andrés, and J. Bertranpetit. 2001. Sequence variability of a human pseudogene. Genome Res. 11(6): 1071–1085. Matoba, Y., T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama. 2006. Crystallographic evidence that dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281(13): 8981–8990. McGraw, K. J. 2008. An update on the honesty of melanin-based color signals in birds. Pigment Cell Melanoma Res. 21: 133–138. McGraw, K. J. and M. C. Nogare. 2004. Carotenoid pigments and the selectivity of psittacofulvin-based coloration systems in parrots. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 138(3): 229–233. McGraw, K. J. and M. C. Nogare. 2005. Distribution of unique red feather pigments in parrots. Biol. Lett. 1: 38–43. McGraw, K. J., R. J. Safran, and K. Wakamatsu. 2005. How feather colour reflects its melanin content. Funct. Ecol. 19: 816–821. Merlin, F. 2010. Evolutionary chance mutation: A defense of the modern synthesis' consensus view. Philos. Theor. Biol. 2: e103. Metzler, D. E. and ‎C. M. Metzler. 2001. Biochemistry: The chemical reactions of living cells. 2nd ed. Cambridge, United Kingdom: Academic Press. Moilanen, J. S. and K. Majamaa. 2003. Phylogenetic network and physicochemical properties of nonsynonymous mutations in the protein-coding genes of human mitochondrial DNA. Mol. Biol. Evol. 20(8): 1195–1210. Murphy, M. E., J. R. King, T. G. Taruscio, and G. R. Geupel. 1990. Amino acid composition of feather barbs and rachises in three species of pygoscelid penguins: Nutritional implications. The Condor 92 (4): 913–921. Napolitano, A., A. Pezzella, G. Prota, R. Seraglia, and P. Traldi. 1996. Structural analysis of synthetic melanins from 5,6-dihydroxyindole by matrixassisted laser desorption⁄ionization mass spectrometry. Rapid Commun. Mass. Spectrom. 10: 468–472. Oetting, W. S., A. M. Churilla, H. Yamamoto, and J. A. Brumbaugh. 1985. C pigment locus mutants of the fowl produce enzymatically inactive tyrosinase-like molecules. J. Exp. Zool. 235: 237–245. Parnell A. J. , A. L. Washington, O. O. Mykhaylyk, C. J. Hill, A. Bianco, S. L. Burg, A. J. C. Dennison, M. Snape, A. J. Cadby, A. Smith, S. Prevost, D. M. Whittaker, R. A. L. Jones, J. Patrick, A. Fairclough, and A. R. Parker. 2015. Spatially modulated structural colour in bird feathers. Sci. Rep. 5: 18317. Perrin, M. R. 2009. Niche separation in African parrots. pp. 29–37. In: D. M. Harebottle, A. J. F. K. Craig, M. D. Anderson, H. Rakotomanana, and M. Muchai, eds. Pettingill, O. S. 1985. Ornithology in laboratory and field. 5th ed. New York: Academic Press. Pimstone, N. R., R. Tenhunen, P. T. Seitz, H. S. Marver, and R. Schmid. 1971. The enzymatic degradation of hemoglobin to bile pigments by macrophages. J. Exp. Med. 133(6): 1264–1281. Pruitt, K. D., T. Tatusova, and D. R. Maglott. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35: D61–D65. Raposo, G. and M. S. Marks. 2002. The dark side of lysosome-related organelles: Specialization of the endocytic pathway for melanosome biogenesis. Traffic 3: 237–248. Raposo, G. and M. S. Marks. 2007. Melanosomes – dark organelles enlighten endosomal membrane transport. Nat. Rev. Mol. Cell Biol. 8(10): 786–797. Roulin, A. and A. L. Ducrest. 2013. Genetics of colouration in birds. Semin. Cell Dev. Biol. 24(6-7): 594–608. Samanta, U. and P. Chakrabarti. 2001. Assessing the role of tryptophan residues in the binding site. Protein Eng. 14(1): 7–15. Schmid, D., E. Belser, and F. Zülli. 2007. Self-tanning based on stimulation of melanin biosynthesis. Cosmetics & Toiletries 122: 55–62. Searle, A. G. 1990. Comparative genetics of albinism. Ophthalmic Paediatr. Genet. 11(3): 159–164. Slominski, A., D. J. Tobin, S. Shibahara, and J. Wortsman. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84(4): 1155–1228. Solano, F. 2014. Melanins: Skin pigments and much more—types, structural models, biological functions, and formation routes. New J. Sci. doi:10.1155/2014/498276. Article ID 498276. Spencer, J. D. and K. U. Schallreuter. 2011. Regulation of pigmentation in human epidermal melanocytes by functional high-affinity β-melanocyte-stimulating hormone/melanocortin-4 receptor signaling. Endocrinology 150: 1250 –1258. Stenson, P. D., M. Mort, E. V. Ball, K. Shaw, A. Phillips, and D. N. Cooper. 2014. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 133(1): 1–9. Stephens, M. and P. Scheet. 2005. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76(3): 449–462. Stephens, M., N. J. Smith, and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68(4): 978–89. Streit, L. and W. Heidrich. 2002. A biologically-parameterized feather model. Eurographics 21: 3. Teneva, A. 2009. Molecular markers in animal genome analysis. Biotechnol. Anim. Hus. 25(5-6): 1267–1284. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22): 4673-4680. Tief, K., M. Hahne, A. Schmidt, and F. Beermann. 1996. Tyrosinase, the key enzyme in melanin synthesis, is expressed in murine brain. Eur. J. Biochem. 241: 12–16. Tobita-Teramoto, T., G. Y. Jang, K. Kino, D. W. Salter, J. Brumbaugh, and T. Akiyama. 2000. Autosomal albino chicken mutation (ca/ca) deletes hexanucleotide (-ΔGACTGG817) at a copper-binding site of the tyrosinase gene. Poult. Sci. 79(1): 46–50. Tomita, Y. and Y. Miyamura. 1998. Oculocutaneous albinism and analysis of tyrosinase gene in japanese patients. Nagoya J. Med. Sci. 61: 97–102. Van den Abeele, D. 2005. Lovebirds: Owner's manual and reference guide. New Jersey: TFH Publications. Van Grouw, H. 2006. Not every white bird is an albino: Sense and nonsense about colour aberrations in birds. Dutch Birding 28: 79–89. Vignal, A., D. Milan, M. Sancristobal, and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34: 275–305. Weiss, K. M. 1995. Genetic variation and human disease: Principles and evolutionary approaches. Cambridge, United Kingdom: Cambridge University Press. Winder, A. J., A. Wittbjer, E. Rosengren, and H. Rorsman. 1993. Fibroblasts expressing mouse c locus tyrosinase produce an authentic enzyme and synthesize phaeomelanin. J. Cell Sci. 104: 467–475. Wolfe, K. H. and P. M. Sharp. 1993. Mammalian gene evolution: Nucleotide sequence divergence between mouse and rat. J. Mol. Evol. 37(4): 441–456. Yamaguchi, Y., M. Brenner, and V. J. Hearing. 2007. The regulation of skin pigmentation. J. Biol. Chem. 282: 27557–27561. Yang, Z., R. Nielsen, N. Goldman, and A. M. Pedersen. 2000. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1): 431–449. Ye J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, and T. L. Madden. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13: 134. Zecca, L., D. Tampellini, M. Gerlach, P. Riederer, R. G. Fariello, and D. Sulzer. 2001. Substantia nigra neuromelanin: structure, synthesis, and molecular behaviour. Mol. Pathol. 54: 414–418.
摘要: 摘要 大多數生物的顏色表型是由真黑色素(eumelanin)及褐黑色素(phaeomelanin)所形成,對寵物飼養或育種者而言,藉由分子遺傳學了解色素形成機制,可有效地辨別個體顏色多樣性中的基因型態。情侶鸚鵡(lovebird)中,有兩種經由隱性遺傳所呈現的白色羽毛表型,分別為紅眼黃/白化(lutino/albino; ino)及黑眼黃/白化(dark eyed clear; DEC),在兩種變異個體中,真黑色素的產生幾乎被完全阻斷,稱為酪胺酸酶陰性白化症(tyrosinase negative albinism)。而動物中發現,酪胺酸酶基因突變具有獨立演化性,其中,在許多馴養的雞種更發現相似的隱性白表型存在,這意味著酪胺酸酶基因可作為探究鸚鵡羽毛顏色減退變異的候選基因(candidate gene),我們的試驗將探討酪胺酸酶基因在愛情鳥白色羽毛表型中所引導的機制變化。使用脊椎動物的同源基因預測酪胺酸酶蛋白編碼區序列,用以設計愛情鳥基因組DNA之引子。分析紅眼黃/白化、黑眼黃/白化及具色素沉著表型經增殖後的序列,在序列中,我們發現了六個單核苷酸多態性(single nucleotide polymorphism, SNP):3個同義替換(synonymous)及3個非同義取代(non-synonymous)。其中,與紅眼黃/白化表型相關的胺基酸置換,發生在酪胺酸酶基因的外顯子1且為第238個密碼子,該變異位點之色胺酸(Tryptophan)是酪胺酸酶結構在功能性演化下所存在的一個高度保留以及對突變敏感的胺基酸。另一變異則是在黑眼黃/白化羽色表型之酪胺酸酶外顯子4序列中發現1344-1349核苷酸位點的6 bp (5'-CTATGA-3')序列缺失,在序列經推導(deduced)後,減少的兩個胺基酸,分別是天門冬胺酸(aspartic acid)及酪胺酸(tyrosine),此缺失發生在酪胺酸酶的第448及449兩個密碼子,將導致不完整的蛋白序列,又稱為截斷蛋白(truncated protein)。此外,我們使用試驗中表型間所發現的序列差異與單核苷酸多態性設計等位基因特異性(allele-specific)引子,並以聚合酶連鎖反應(Polymerase chain reaction; PCR)作快速檢測,分辨個體是否帶有白化因子。因酪胺酸酶基因的機能性演化,也可能存在同樣會導致紅眼黃/白化及黑眼黃/白化羽色表型的其他基因型變異,而這兩個色素沉著不足的突變位點仍可作為育種選拔的分子標記選擇之一。
Abstract The color phenotype caused by both eumelanin and phaeomelanin pigments in most of organisms. For pet owners or breeders, unraveling the mechanisms underlying the pigmentation morphs from molecular genetics can be used efficiently for animal genotyping. There are two different forms of recessive white lovebird; ino and dark eyed clear (DEC), respectively. In the case of these variants, the production of eumelanin is almost completely blocked, dealing with what called tyrosinase negative albinism. Mutations within tyrosinase gene have occurred independently in the evolution of several animal species. A number of domesticated chicken species also display a similar recessive white phenotype, suggesting that TYR could be a candidate gene for parrots' hypopigmentation. In our experiment will investigate the role of tyrosinase gene associated with white plumage color variation in the lovebird. Using the homologous genes of vertebrate to predicted TYR protein coding region sequence, and then designed primers for lovebird genomic DNA. Amplified sequences are analyzed among ino, DEC and colored phenotypes. We found 6 SNPs (single nucleotide polymorphism): 3 synonymous and 3 non-synonymous variants. A non-synonymous mutation had found in tyrosinase exon 1, 238th amino acid from the start codon, and it is related to ino phenotype. Tryptophan of the mutant site is a highly conserved and mutation sensitive amino acid as a result of the functional evolution of tyrosinase structure. Another mutation is a six-nucleotide deletion of tyrosinase exon 4. The deduced DEC phenotype tyrosinase lacks two amino acids, aspartic acid and tyrosine. The defect at the 448 and 449 codon of tyrosinase can lead to a truncated protein. Therefore, we use the sequence differences and SNPs to design allele-specific primers for PCR diagnostic tests, and rapidly detect the carrier from colored individual. There may have other mutations exist resulting in the same phenotype of ino or DEC in the lovebird due to the tyrosinase gene functional evolution. The two mutant sites of hypopigmentation can still be used as one of the options in molecular markers for breeding selection.
URI: http://hdl.handle.net/11455/96552
文章公開時間: 10000-01-01
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.