Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96557
標題: 以木黴菌發酵稻稈於黑肚綿羊飼糧之應用
Application of rice straw fermented by Trichoderma in Barbados sheep diet
作者: 潘源廣
Yuan-Guang Pan
關鍵字: 木黴菌
固態發酵
稻稈
Trichoderma
solid state fermentation
rice straw
引用: 行政院農業委員會。104年。農業廢棄物統計。2017年8月1日,取自:http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx。 Abe N., K. Yamamoto, and A. Hirota. 2000. Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690. 64(3): 620-622. Abdel-Lateff A., K. Fisch, and A. D. Wright. 2009. Trichopyrone and other constituents from the marine sponge-derived fungus Trichoderma sp. Z. Naturforsch., C: J. Biosci. 64: 186-192. Abo-Donia F. M., S. N. Abdel-Azim, M. M. Y. Elghandour, A. Z. M. Salem, G. Buendía, and N. A. M. Soliman. 2014. Feed intake, nutrient digestibility, and ruminal fermentation activities in sheep-fed peanut hulls treated with Trichoderma viride or urea. Trop. Anim. Health Prod. 46: 221-228. Abdel-Azim S. N., M. A. Ahmed, F. Abo-Donia, and H. Soliman. 2011. Evaluation of fungal treatment of some agricultural residues. Egypt J. Sheep Goat Sci. 6: 1-13. Aderolu A. Z., E. A. Iyayi, and A. A. Onilude. 2007. Changes in nutritional value of rice husk during Trichoderma viride degradation. Bulg. J. Agric. Sci. 13: 583-589. Adney B. and J. Baker. 1996. Measurement of cellulase activities. Laboratory Analytical Procedure. NREL LAP-006. Andberg M., M. Penttilä, and M. Saloheimo. 2015. Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Bioresour. Technol. 181: 105-113. ANKOM Technology. 2004. In vitro true digestibility using the DAISYII Incubator ANKOM Technology. Arce-cervantes O., G. D. Mendoza, P. A. Hernández, M. Meneses, N. Torres-Salado, and O. Loera. 2013. The effects of a lignocellulolytic extract of Fomes sp. EUM1 on the Intake, digestibility, feed efficiency and growth of lambs. Anim. Nutr. Feed Technol. 13: 363-372. Assavanig A., B. Amornkitticharoen, N. Ekpaisal, and V. Meevootisom. 1992. Isolation, characterization and function of laccase from Trichoderma. Appl. Microbiol. Biotechnol. 38: 198-202. Belal E. D. 2013. Bioethanol production from rice straw residue. Braz. J. Microbiol. 44: 225-234. Belewu M. A., A. A. Asifat, and M. B. Yousuf. 2007. Evaluation of Trichoderma harzanium treated cassava waste on the quality and quantity of milk of goat. Afr. J. Biotechnol. 6(18): 2193-2196. Blum D. L., X. L. Li, H. Chen, and L. G. Ljungdahl. 1999. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl. Environ. Microbiol. 65: 3990-3995. Bourbonnais R. and M. G. Paice. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267: 99-102. Cao L., H. Tan, Y. Liu, X. Xue, and S. Zhou. 2008. Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett. Appl. Microbiol. 46: 389-394. Chaji M., T. Mohammadabadi, and A. Aghaei. 2010. The effect of different methods of processing on nutritive value and degradation of rice straw by rumen mixed bacteria. 2010. J. Anim. Vet. Adv. 9(15): 2004-2007. Chiang S. S., E. Ulziijargal, R. C. Chien, and J. L. Mau. 2015. Antioxidant and anti-inflammatory properties of solid-state fermented products from a medicinal mushroom, Taiwanofungus salmoneus (Higher Basidiomycetes) from Taiwan. Int. J. Med. Mushrooms. 17(1): 21-32. Cottyn B. G. and C. H. V. Boucque. 1968. Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. J. Agr. Food Chem. 16: 105-107. Daoubi M., C. Pinedo-Rivilla, M. B. Rubio, R. Hermosa, E. Monte, J. Aleu, and I. G. Collado. 2009. Hemisynthesis and absolute configuration of novel 6-pentyl-2H-pyran-2-one derivatives from Trichoderma spp. Tetrahedron 65: 4834-4840. DePeters E. J., G. Getachew, J. G. Fadel, L. Corona, and R. A. Zinn. 2007. Influence of corn hybrid, protease and methods of processing on in vitro gas production. Anim. Feed Sci. Technol. 135: 157-175. Dehority B. A. 1984. Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl. Environ. Microbiol. 48: 182-185. de Souza R. W. 2013. Microbial degradation of lignocellulosic biomass. In: Chandel A. K. and S. S. da Silva, editors. Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. InTech. Ch. 9: 207-248. doi: 10.5772/54325. de Vries O. M. H., W. H. C. F. Kooistra, and G. H. Wessels. 1986. Formation of an extracellular laccase by Schizophyllum commune dikaryon. J. Gen. Microbiol. 132: 2817-2826. Druzhinina I. S., V. Seidl-Seiboth, A. Herrera-Estrella, B. A. Horwitz, C. M. Kenerley, E. Monte, P. K. Mukherjee, S. Zeilinger, I. V. Grigoriev, and C. P. Kubicek. 2011. Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 9: 749-759. Eneyskaya E. V., A. A. Kulminskaya, A. N. Savelev, K. A. Shabalin, A. M. Golubev, and K. N. Neustroev. 1998. α-Mannosidase from Trichoderma reesei participates in the postsecretory deglycosylation of glycoproteins. Biochem. Biophys. Res. Commun. 245: 43-49. Eneyskaya E. V., A. A. Kulminskaya, A. N. Savelev, N. V. Saveleva, K. A. Shabalin, and K. N. Neustroev. 1999. Acid protease from Trichoderma reesei: limited proteolysis of fungal carbohydrases. Appl. Microbiol. Biotechnol. 52: 226-231. Friggens N. C., J. D. Oldham, R. J. Dewhurst, and G. Horgan. 1998. Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. J. Dairy Sci. 81: 1331-1344. Gaĭda A. V., G. N. Rudenskaia, and V. M. Stepanov. 1981. Isolation and comparative properties of serine proteinases of the microscopic fungi Trichoderma lignorum and Trichoderma koningii. Biokhimiia. 46(11): 2064-2073. Garrett W. N., H. G. Walker, G. O. Kohler, M. R. Hart, and R. P. Graham. 1981. Steam treatment of crop residues for increased ruminant digestibility. II. Lamb feeding studies. J. Anim. Sci. 51: 409-413. Giraldo L. A., M. L. Tejido, M. J. Ranilla, S. Ramos, and M. D. Carro. 2008. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J. Anim. Sci. 86(7): 1617-1623. Gochev V. K. and A. I. Krastanov. 2007. Isolation of laccase producing Trichoderma spp. Bulg. J. Agric. Sci. 13: 171-176. Gourlay K., V. Arantes, and J. N. Saddler. 2012. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol. Biofuels. 5: 51. Gunun P., M. Wanapat, and N. Anantasook. 2013. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian-Australas. J. Anim. Sci. 26(12): 1689-1697. Gupta R. and Y. Y. Lee. 2009. Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol. Bioeng. 102: 1570-1581. Gusakov A. V. 2011. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29: 419-425. Guggolz J. R., R. M. Saundress, G. O. Kohler, and T. Klopeenstein. 1971. Enzymatic evaluation of process for improving agricultural wastes for ruminants feeds. J. Anim. Sci. 33: 167-170. Helal G. A. 2005. Bioconversion of straw into improved fodder: Fungal flora decomposing rice straw. Mycobiology. 33(3): 150-157. Hu J., V. Arantes and J. N. Saddler. 2011. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol. Biofuels. 4: 36. Irfan M., M. Nadeem, and Q. Syed. 2012. Influence of nutritional conditions for endoglucanase production by Trichoderma viride in SSF. Global J. Biotechnol. Biochem. 7(1): 7-12. Irfan M., M. Nadeem, and Q. Syed. 2014. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci.7: 317-326. Isil S. and A. Nilufer. 2005. Investigation of factors affecting xylanase activity from Trichoderma harzianum 1073 D3. Braz. Arch. Biol. Technol. 48(2): 187-193. Jackson M. G. 1977. Review article: The alkali treatment of straw. Anim. Feed Sci. Technol. 2: 105-130. Jafari M. A., A. Nikkhah, A. A. Sadeghi, and M. Chamanni. 2007. The Effect of pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw. Pak. J. Biol. Sci. 10(15): 2460-2464. Jahromi M. F., J. B. Liang, M. Rosfarizan, Y. M. Goh, P. Shokryazdan, and Y. W. Ho. 2010. Effects of Aspergillus niger (K8) on nutritive value of rice straw. J. Biotechnol. 9(42): 7043-7047. Kaur H., S. Sharma, P. K. Khanna, and S. Kapoor. 2015. Evaluation of Ganoderma lucidum strains for the production of bioactive components and their potential use as antimicrobial agents. J. Appl. Nat. Sci. 7: 298-303. Khandaker Z. H., M. J. Uddin, and Ara Z. 2015. Use of crop residues for manufacturing compound pellet feed for cattle. Int. J. Recent Sci. Res. 6(10): 6612-6618. Kholif A. E., H. M. Khattab, A. A. El-Shewy, A. Z. M. Salem, A. M. Kholif, M. M. El-Sayed, H. M. Gado, and M. D. Mariezcurrena. 2014. Nutrient Digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with pleurotus ostreatus. Asian-Aust. J. Anim. Sci. 27(3): 357-364. Kim B. G., B. R. Jung, J. G. Jung, H. G. Hur, and J. H. Ahn. 2004. Purification and characterization of β-xylosidase from Trichoderma sp. SY. J. Microbiol. Biotechnol. 14: 643-645. Kondo M., M. Yoshida, M. Loresco, R. M. Lapitan, J. R. V. Herrera, A. N. D. Barrio, Y. Uyeno, H. Matsui, and T. Fujihara. 2015. Nutrient contents and in vitro ruminal fermentation of tropical grasses harvested in wet season in the Philippines. Adv. Anim. Vet. Sci. 3(12): 694-699. Latifian M., Z. Hamidi-Esfahani, and M. Barzegar. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol. 2007. 98(18):3634-3637. Lee H. V., S. B. A. Hamid, and S. K. Zain. 2014. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical Process. Sci. World J. 2014: 1-20. Lee M. R. F., E. L. Jones, J. M. Moorby, M. O. Humphreys, M. K. Theodorou, J. C. MacRae, and N. D. Scollan. 2001. Production responses from lambs grazed on Lolium perenne selected for an elevated water-soluble carbohydrate concentration. Anim. Res. 50: 441-449. Liu J. and J. Yang. 2007. Cellulase production by Trichoderma koningii AS3.4262 in solid-state fermentation using lignocellulosic waste from the vinegar industry. Food Technol. Biotechnol. 45(4): 420-425. Lu B., A. Xu, and J. Wang. 2014. Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem. 16: 1326-1335. Lv J. N., Y. Q. Chen, X. J. Guo, X. S. Piao, Y. H. Cao, and B. Dong. 2013. Effects of supplementation of β-mannanase in corn-soybean meal diets on performance and nutrient digestibility in growing pigs. Asian-Australas. J. Anim. Sci. 26(4): 579-587. Malunga L. M. and T. Beta. 2015. Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viride or Neocallimastix patriciarum xylanase. Food Chem. 167: 311-319. Mandal K. G., A. K. Misra, K. M. Hati, K. K. Bandyopadhyay, P. K. Ghosh, and M. Mohanty. 2004. Rice residue- management options and effects on soil properties and crop productivity. J. Food, Agric. Environ. 2(1): 224-231. McCue P. and K. Shetty. 2003. Role of carbohydrate-cleaving enzymes in phenolic antioxidant movilization from whole soybean fermented with Rhizopus oligosporous. Food Biotechnol. 17: 27-37. Menke K. H., L. Raab, A. Salewski, H. Steingas, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. Camb. 92: 217-222. Micard V., C. M. G. C. Renard, and J. F. Thibault. 1994. Studies on enzymic release of ferulic acid from sugar-beet pulp. LWT--Food Sci. Technol. 27(1): 59-66. Miller G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3): 426-428. Morgavi D. P., K. A. Beauchemin, V. L. Nsereko, L. M. Rode, T. A. McAllister, and Y. Wang. 2004. Trichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrates but not pure cellulose. J. Sci. Food Agric. 84:1083-1090. Mohamed M. I. and H. A. A. Abou-Zeina. 2008. Effect of dietary supplementation with biologically treated sugar beet pulp on performance and organ function in goat kids. Am.-Eurasian J. Agric. Environ. Sci. 4(4): 410-416. Moktan B., J. Saha, and P. K. Sarkar. 2008. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Int. Food Res. 41: 586-593. Moniruzzaman M. 1996. Effect of steam explosion on the physicochemical properties and enzymatic saccharification of rice straw. Appl. Biochem. Biotechnol. 59: 283-297. Montoya S., Ó. Sánchez, and L. Levin. 2014. Mathematical modeling of lignocellulolytic enzyme production from three species of white rot fungi by solid-state fermentation. Adv. Comput. Biol. 232: 371-377. Moran J. B. 1983. Rice bran as a supplemented to elephant grass for cattle and buffalo in Indonesia. J. Agri. Sci. 100: 709-716. Mukherjee R. and B. Nandi. 2004. Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int. Biodeterior. Biodegrad. 53(1): 7-12. Nascimento A. S., J. C. Muniz, R. Aparício, A. M. Golubev, and I. Polikarpov. 2014. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme. FEBS J. 281: 4165-4178. Okab A. B., M. A. Ayoub, E. M. Samara, K. A. Abdoun, A. A. Al-Haidary, A. A. Koriem, and A. A. Hassan. 2012. Improvement of growth and nitrogen utilization in sheep using sugar beet pulp treated with Trichoderma reesei or urea. Trop. Anim. Health Prod. 44: 1623-1629. Piel J., R. Atzorn, R. Gabler, F. Kuhnemann, and W. Boland. 1997. Celulysin from the parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signaling cascade. FEBS Lett. 416: 143-148. Raghuwanshi S., D. Deswal, M. Karp, and R. C. Kuhad. 2014. Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose. Fuel. 124: 183-189. Rahnama N., H. L. Foo, N. A. A. Rahman, A. Ariff, and U. K. M. Shah. 2014. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol. 14: 103. Ramos L. P. 2003. The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova. 26: 863-871. Rangnekar D. V., V. C. Badve, S. T. Kharat, B. N. Sobale, and A. L. Joshi. 1982. Effect of high-pressure steam treatment on chemical composition and digestibility in vitro of roughages. Anim. Feed Sci. Technol. 7: 61-70. Rao P. S. and T. N. Pattabiraman. 1989. Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Anal. Biochem. 181(1): 18-22. Rashad M. M., H. M. Abdou, and A. E. Mahmoud. 2016. Production of some bioactive materials by Pleurotus ostreatus from pineapple residues and rice straw via solid state fermentation. Res. J. Pharm., Biol. Chem. Sci. 7(5): 2730-2736. Rehman Z. U., T. Aziz, S. A. Bhatti, G. Ahmad, J. Kamran, S. Umar, C. Meng, and C. Ding. 2016. Effect of β-mannanase on the performance and digestibility of broilers. Asian J. Anim. Vet. Adv. 11(7): 393-398. Rezende M. I., A. M. Barbosa, A. F. D. Vasconcelos, and A. S. Endo. 2002. Xylanase production by Trichoderma harzianum Rifai by solid state fermentation on sugarcane bagasse. Braz. J. Microbiol. 33(1): 67-72. Rodrigues M. A. M., P. Pinto, R. M. F. Bezerra, A. A. Dias, C. V. M. Guedes, V. M. G. Cardoso, J. W. Cone, L. M. M. Ferreira, J. Colaço, and C. A. Sequeira. 2008. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. Technol. 141: 326-338. Rondini L., M. N. Peyrat-Maillard, A. Marsset-Baglieri, G. Fromentin, P. Durand, D. Tome, M. Prost, and C. Berset. 2004. Bound ferulic acid from bran is more bioavailable than the free compound in rat. J. Agric. Food Chem. 52: 4338-4343. Rostika R. and R. Safitri. 2012. Influence of fish feed containing corn-cob was fermented by Trichoderma spp, Aspergillus spp, Rhizopus Oligosporus to the rate of growth of java barb (Puntius Gonionitus) APCBEE Procedia 2: 148-152. Salem A. Z. M., M. El-Adawy, H. Gado, L. M. Camacho, M. Ronquillo, H. Alsersy, and B. E. Borhami. 2011. Effects of exogenous enzymes on nutrients digestibility and growth performance in sheep and goats. Trop. Subtrop. Agroecosyst. 14: 867-874. Saravanakumar K., R. Vivek, N. S. Boopathy, L. Yaqian, K. Kathiresan, and J. Chen. 2015. Anticancer potential of bioactive 16-methylheptadecanoic acid methyl ester derived from marine Trichoderma. J. Appl. Biomed. 13: 199-212. Shahrim Z., V. Sabaratnam, N. A. A. Rahman, S. Abd-Aziz, M. A. Hassan, and M. I. A. Karim. 2008. Production of reducing sugars by Trichoderma sp. KUPM0001 during solid substrate fermentaion of sago starch processing waste Hampas. Res. J. Microbiol. 3(9): 569-579. Shawky B. T., M. G. Mahmoud, E. A. Ghazy, M. M. S. Asker, and G. S. Ibrahim. 2011. Enzymatic hydrolysis of rice straw and corn stalks for monosugars production. J. Genet. Eng. Biotechnol. 9: 59-63. Singh H. B., B. N. Singh, S. P. Singh, and C. S. Nautiyal. 2010. Solid-state cultivation of Trichoderma harzianum NBRI-1055 for modulating natural antioxidants in soybean seed matrix. Bioresour. Technol. 101: 6444-6453. Soberon M. A., D. J. Cherney, and J. H. Cherney. 2012. Free ferulic acid uptake in ram lambs. J. Anim. Sci. 90(6): 1885-1891. Sosnowski M. R., J. D. Fletcher, A. M. Daly, B. C. Rodoni, and S. L. H. Viljanen-Rollinson. 2009. Techniques for the treatment, removal and disposal of host material during programmes for plant pathogen eradication. Plant Pathol. 58: 621-635. Suarez B., M. Rey, P. Castillo, E. Monte, and A. Llobell. 2004. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. Microbiol. Biotechnol. 65: 46-55. Sun H., X. Ge, Z. Hao, and M. Peng. 2010. Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afri. J. Biotechnol. 9(2): 163-166. Tarus P. K., C. C. Lang'at-Thoruwa, A. W. Wanyonyi, and S. C. Chhabra. 2003. Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. Bull. Chem. Soc. Ethiop. 17(2): 185-190. Tenkanen M., M. Vrsanská, M. Siika-aho, D. W. Wong, V. Puchart, M. Penttilä, M. Saloheimo, and P. Biely. 2013. Xylanase XYN IV from Trichoderma reesei showing exo-and endo-xylanase activity. FEBS 208: 285-301. Thanh N. T., H. T. Nhung, N. T. Thuy, T. T. N. Lam, P. T. Giang, T. N. Lan, N. V. Viet, and V. T. Man. 2014. The diversity and antagonistic ability of Trichoderma spp. on the Aspergillus Flavus pathogen on peanuts in north center of Vietnam. 2014. World J. Agric. Res. 2(6):291-295. Tijerino A., R. E. Cardoza, J. Moraga, M. G. Malmierca, F. Vicente, J. Aleu, I. G. Collado, S. Gutiérrez, E. Monte, and R. Hermosa. 2011. Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet. Biol. 48(3): 285-296. Togtokhbayar N., M. A. Cerrillo, G. B. Rodríguez, M. M. M. Y. Elghandour, A. Z. M. Salem, C. Urankhaich, S. Jigjidpurev, N. E. Odongo, and A. E. Kholif. 2015. Effect of xylanase on rumen in vitro gas production and degradability of wheat straw. Anim. Sci. J. 86: 765-771. Uchikoba T., T. Mase, K. Arima, H. Yonezawa, and M. Kaneda. 2001. Isolation and characterization of a trypsin-like protease from Trichoderma viride. Biol. Chem. 382: 1509-1513. van-den-Brink J. and R. P. de-Vries. 2011. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 91(6): 1477-1492. Van Keulen J. and B. A. Young. 1977. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 44:282-287. Van Soest P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral-detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597. Várnai A., T. H. F. Costa, C. B. Faulds, A. M. F. Milagres, M. Siika-aho, and A. Ferraz. 2014. Effects of enzymatic removal of plant cell wall acylation (acetylation, p-coumaroylation, and feruloylation) on accessibility of cellulose and xylan in natural (non-pretreated) sugar cane fractions. Biotechnol. Biofuels 7:153. Verhagen B. W. M., J. Glazebrook, T. Zhu, H. S. Chang, L. C. van Loon, and C. M. J. Pieterse. 2004. The transcription of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant-Microbe Interact. 17:895-908. Vinale F., K. Sivasithamparam, E. L. Ghisalberti, R. Marra, S. L. Woo, and M. Lorito. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40(1): 1-10. Wang Y., J. E. Ramirez-Bribiesca, L. J. Yanke, A. Tsang, and T. A. McAllister. 2012. Effect of exogenous fibrolytic enzyme application on the microbial attachment and digestion of barley straw in vitro. Asian-Aust. J. Anim. Sci. 25(1): 66-74. Wen Y. L., L. P. Yan, and C. S. Chen. 2013. Effects of fermentation treatment on antioxidant and antimicrobial activities of four common Chinese herbal medicinal residues by Aspergillus oryzae. J. Food Drug Anal. 21(2): 219-226. Wood D. A. 1980. Production, purification and properties of extracellular laccase of Agariczis bisporzds. J. Gen. Microbiol. 117: 327-338. Wood T. M. and S. I. McCrae. 1979. Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181: 181-209. Yamamoto T., N. Izumi, H. Ui, A. Sueki, R. Masuma, K. Nonaka, T. Hirose, T. Sunazuka, T. Nagai, H. Yamada, S. Omura, and K. Shiomi. 2012. Wickerols A and B: novel anti-influenza virus diterpenes produced by Trichoderma atroviride FKI-3849. Tetrahedron 68: 9267-9271. Yang C. A., C. H. Cheng, C. T. Lo, S. Y. Liu, J. W. Lee, and K. C. Peng. 2011. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. J. Agric. Food Chem. 59: 4519–4526. Yoon L. W., G. C. Ngoh, and A. S. M. Chua. 2013. Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse. Enzyme Microb. Technol. 53: 250-256. Yue W., C. Zhang, L. Shi, Y. Ren, Y. Jiang, and D. O. Kleemann. 2009. Effect of supplemental selenomethionine on growth performance and serum antioxidant status in Taihang black goats. Asian-Aust. J. Anim. Sci. 22: 365-370. Yu L. J., F. Wu, W. Liu, J. Tian, X. Lu, and H. Wen. 2017. Semisynthetic ferulic acid derivative: an efficientfeed additive for genetically improved farmed tilapia (Oreochromis niloticus). Aquacult. Res. 2017: 1-12. Zhang L., Q. Chen, Y. L. Jin, H. L. Xue, J. F. Guan, Z. Y. Wang, and H. Zhao. 2010. Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG). Fuel Process. Technol. 91(12): 1845-1850. Zhao Z., Y. Egashira, and H. Sanada, 2003. Ferulic acid sugar esters are recovered in rat plasma and urine mainly as the sulfoglucuronide of ferulic acid. J. Nutr. 133:1355-1361. Zheng W., Q. Zheng, Y. Xue, J. Hu, and M. T. Gao. 2017. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei. J. Biosci. Bioeng. 123(6): 731-738. Zhou Q., X. Lv, X. Zhang, X. Meng, G. Chen, and W. Liu. 2011. Evaluation of swollenin from Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of cellulose with low cellulase loadings. World J. Microbiol. Biotechnol. 27: 1905-1910. Zou X. T., X. J. Qiao, and Z. R. Xu. 2006. Effect of β-mannanase (hemicell) on growth performance and immunity of broilers. Poult. Sci. 85(12): 2176-2179.
摘要: 稻稈為稻米收割後之副產物,由於高木質素與纖維素含量之特性使其餵飼於反芻動物之消化率不佳,因此使用纖維分解真菌發酵稻稈以期提升營養價值,並以木黴菌發酵稻稈取代台灣常用之百慕達草餵飼黑肚綿羊,以評估木黴菌發酵稻稈做為低成本替代性芻料之應用價值。以三株具生產纖維分解酵素之木黴菌 (NTLg-Te S5-1、 NTLg-Te S9-1與 田中 Ca6-1) 發酵稻稈,結果木黴菌NTLg-Te S5-1以80%水分發酵6天有最佳之纖維素酶 (14.0 U/g DM) 與木聚糖酶 (278.2 U/g DM) 活性,並提升稻稈水萃液中五碳醣 (38.2 mg/g DM) 與六碳醣 (60.3 mg/g DM) 含量,發酵稻稈與瘤胃液培養48小時後,體外氣體生成量 (80.7 mL/g DM) 與體外真乾物質消化率 (69.3%) 皆高於未發酵之稻稈 (73.6 mL/g DM及44.3%),並且發酵後可提升稻稈水萃液中抗氧化物阿魏酸之含量與DPPH自由基清除能力。動物試驗以18隻體重約20 kg之黑肚綿羊逢機分為三組,以飼糧含90%百慕達草為正對照組,以稻稈取代25%百慕達草為負對照組,及發酵稻稈取代25%百慕達草為處理組,試驗期間飼料及飲水任食,試驗進行四週。試驗結果顯示,羊隻乾物質採食量、飼料轉換率、日增重、血液生化值,各組間皆無顯著差異,乾物質消化率以百慕達草組 (57.5%) 顯著最高,發酵稻稈組次之 (52.3%),稻稈組顯著最低 (46.3%),血液中脂質過氧化物濃度以百慕達草組與發酵稻稈組顯著低於稻稈組,以平均飼料轉換率 (百慕達草組11.4、發酵稻稈組12.3及稻稈組16.1) 推算發酵稻稈組有較低之生產成本,因此以25%發酵稻稈取代百慕達草較未發酵稻稈取代百慕達草有較佳之乾物質消化率與較低脂質過氧化情形且較未取代之正對照組有降低生產成本估計值之效果。
Rice straw is a cheap agricultural by-product base on the poor digestibility for ruminant because of the high lignin and cellulose content. The nutrient value of the rice straw could be elevated when it was fermented by lignocellulosic enzymes producing fungi. The purpose of this study is to discuss the feasibility of using rice straw fermented by Trichoderma as ruminant roughage. Three Trichoderma (NTLg-Te S5-1, NTLg-Te S9-1, and Tien Chun Ca6-1), could produce cellulase enzyme, were used to inoculate hot water sterilized rice straw. The results showed that rice straw fermented by Trichoderma NTLg-Te S5-1 at 80% moisture for 6 days had the highest cellulase (14.0±0.63 U/g DM) and xylanase (278.2±19.0 U/g DM) activity, also increased pentose (38.2 mg/g DM) and hexose (60.3 mg/g DM) content. In vitro gas production (80.7 mL/g DM) and in vitro true dry matter digestibility (69.3%) of the fermented rice straw were higher than the rice straw (73.6 mL/g DM and 44.3%). DPPH inhibition and antioxidant ferulic acid content of the water extract were improved after the fermentation. The animal trial was conducted using three groups of Barbados sheep with body weight around 20 kg. The rice straw group (RS) and the fermented rice straw group (FRS) substituted 25% of the Bermuda hay in Bermuda hay group (BER) with rice straw and fermented rice straw respectively. Water, salt block and feed were given ad libitum. The dry matter intake, feed conversion ratio, blood analysis, and daily weight gain were not significantly different among treatment groups. The dry matter digestibility of the BER (57.5%) were the highest, and the FRS (52.3%) were significantly higher than the RS (46.3%). The malondialdehyde content in serum of the FRS and the BER were lower than the RS. The cost of production was estimated by the average feed conversion ratio, the FRS has the lowest cost, since the feed conversion ratio was lower than the RS and the roughage cost is lower than the BER. Therefore, the rice straw fermented by the Trichoderma had the potential to substitute part of the Bermuda hay in Barbados sheep diet to enhance production profit.
URI: http://hdl.handle.net/11455/96557
文章公開時間: 2020-08-21
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.