Please use this identifier to cite or link to this item:
標題: 以氫氧磷灰石前處理搭配微過濾之新穎乳脂肪球膜分離技術探討其產物與乳酸菌之交互作用
Investigation of interaction between lactic acid bacteria and milk fat globule membrane material isolated by a novel method using hydroxyapatite pretreatment and microfiltration
作者: 魏天恩
Tien-En Wei
關鍵字: 乳脂肪球膜
milk fat globule membrane
lactic acid bacteria interaction
引用: 林慶文。2006。乳品加工學,第136頁。第三版。華香園出版社,台北市。 李宜筠。2015。添加葡萄糖酸內酯及檸檬酸對泰式發酵香腸Nham之影響。國立中興大學動物科學所碩士論文,台中市。 Ahn, Y. J., P. Ganesan and H. S. Kwak. 2011. Composition, structure, and bioactive components in milk fat globule membrane. Korean J. Food Sci. Ani. Resour. 31:1-8. Arranz, E., and M. Corredig. 2017. Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. J. Dairy Sci. 100:1-10. Atroshi, F., T. Alaviuhkola, R. Schildt and M. Sandholm. 1983. Fat globule membrane of sow milk as a target for adhesion of K88-positive Escherichia coli. Comp. Immunol. Microb. 6:235-245. Bermúdez-Aguirre, D., R. Mawson and G. V. Barbosa-Cánovas. 2008. Microstructure of fat globules in whole milk after thermosonication treatment. J. Food Sci. 73:325-332. Bezelgues, J. B., F. Morgan, G. Palomo, L. Crosset-Perrotin and P. Ducret. 2009. Short communication: Milk fat globule membrane as a potential delivery system for liposoluble nutrients. J. Dairy Sci. 92:2524-2528. Brisson, G., H. F. Payken, J. P. Sharpe and R. Jiménez-Flores. 2010. Characterization of Lactobacillus reuteri interaction with milk fat globule membrane components in dairy products. J. Agric. Food Chem. 58:5612-5619. Bu, H. F., X. L. Zuo, X. Wang, M. A. Ensslin, V. Koti, W. Hsueh, A. S. Raymond, B. D. Shur and X. D. Tan. 2007. Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J. Clin. Invest. 117:3673-3683. Burgain, J., J. Scher, G. Francius, F. Borges, M. Corgneau, A. M. Revol-Junelles, C. Cailliez-Grimal and C. Gaiani. 2014. Lactic acid bacteria in dairy food: Surface characterization and interactions with food matrix components. Adv. Colloid Interfac. 213:21-35. Clare, D. A., Z. Zheng, H. M. Hassan, H. E. Swaisgood and G. L. Catignani. 2008. Antimicrobial properties of milk fat globule membrane fractions. J. Food Prot. 71:126-133. Conway, V., P. Couture, C. Richard, S. F. Gauthier,Y. Pouliot and B. Lamarche. 2013. Impact of buttermilk consumption on plasma lipids and surrogate markers of cholesterol homeostasis in men and women. Nutr. Metab. Cardiovasc. Dis. 23:1255-1262. Corredig, M. and D. G. Dalgleish. 1997. Isolates from industrial buttermilk: emulsifying properties of materials derived from the milk fat globule membrane. J. Agric. Food Chem. 45:4595-4600. Corredig, M. and D. G. Dalgleish. 1998a. Buttermilk properties in emulsions with soybean oil as affected by fat globule membrane-derived proteins. J. Food Sci. 63:476-480. Corredig, M. and D. G. Dalgleish. 1998b. Characterization of the interface of an oil-in-water emulsion stabilized by milk fat globule membrane material. J. Dairy Res. 65:465-477. Corredig, M., R. R. Roesch and D. G. Dalgleish. 2003. Production of a novel ingredient from buttermilk. J. Dairy Sci. 86:2744-2750. Darilmaz, D. O. and B. Yavuz. 2012. Investigating hydrophobicity and the effect of exopolysaccharide on aggregation properties of dairy propionibacteria isolated from turkish homemade cheeses. J. Food Prot. 75:359-365. Dewettinck, K., R. Rombau, N. Thienpon, T. T. Le, K. Messen and J. Van Camp. 2008. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 18:436-457. Douëllou, T., M. C. Montel, and D. T. Sergentet. 2017. Invited review: Anti-adhesive properties of bovine oligosaccharides and bovine milk fat globule membrane- associated glycoconjugates against bacterial food enteropathogens. J. Dairy Sci. 100:3348-3359. Et-Thakafy, O., F. Guyomarc'h and C. Lopez. 2017. Lipid domains in the milk fat globule membrane: Dynamics investigated in situ in milk in relation to temperature and time. Food Chem. 220:352-361. Evers, J. M. 2004. The milk fat globule membrane-compositional and structural changes post secretion by the mammary secretory cell. Int. Dairy J. 14:661-674. Evers, J. M., R. G. Haverkamp, S. E. Holroyd, G. B. Jameson, D. D. S. Mackenzie and O. J. McCarthy. 2008. Heterogeneity of milk fat globule membrane structure and composition as observed using fluorescence microscopy techniques. Int. Dairy J. 18:1081-1089. Fong, B. Y., C. S. Norris and A. K. H. MacGibbon. 2007. Protein and lipid composition of bovine milk-fat-globule membrane. Int. Dairy J. 17:275-288. Gallier, S., D. Gragson, R. JiméNez-Flores and D. Everett. 2010. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. J. Agric. Food Chem. 58:4250-4257. Gallier, S., E. Shaw, A. Laubscher, D. Gragson, H. Singh, and R. Jiménez-Flores. 2014. Adsorption of bile salts to milk phospholipid and phospholipid-protein monolayers. J. Agric. Food Chem. 62:1363-1372. Guri, A., M. Griffiths, C. M. Khursigara and M. Corredig. 2012. The effect of milk fat globules on adherence and internalization of Salmonella Enteritidis to HT-29 cells. J. Dairy Sci. 95:6937-6945. Gurnida, D. A., A. M. Rowan, P. Idjradinata, D. Muchtadi and N. Sekarwana. 2012. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum. Dev. 88:595-601. Gülseren, İ., and M. Corredig. 2013. Storage stability and physical characteristics of tea-polyphenol-bearing nanoliposomes prepared with milk fat globule membrane phospholipids. J. Agric. Food Chem. 61:3242-3251. Heid, H. W. and T. W. Keenan. 2005. Intracellular origin and secretion of milk fat globules. Eur. J. Cell. Biol. 84:245-258. Hernell, O., N. Timby, M. Domellöf and B. Lönnerdal. 2016. Clinical benefits of milk fat globule membranes for infants and children. J. Pediatr. 173:S60-S65. Holzmuller, W., and U. Kulozik. 2016a. Technical difficulties and future challenges in isolation membrane material from milk fat globules in industrial settings-A critical review. Int. Dairy J. 61:51-66. Holzmuller, W., and U. Kulozik. 2016b. Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. Int. Dairy J. 63:88-91. Holzmuller, W., O. Gmach, A. Griebel and U. Kulozik. 2016. Casein precipitation by acid and rennet coagulation buttermilk: impact of pH and temperature on isolation of milk fat globule membrane proteins. Int. Dairy J. 63:115-123. Horemans, T., M. Kerstens, S. Clais, K. Struijs, P. V. D. Abbeele, T. V. Assche, L. Maes and P. Cos. 2012. Evaluation of the anti-adhesive effect of milk fat globule membrane glycoproteins on Helicobacter pylori in the human NCI-N87 cell line and C57BL⁄6 mouse model. Helicobacter 17:1523-5378. Howard, A. N., and J. Marks. 1979. Effect of milk products on serum cholesterol. Lancet 2:957. Hyronimus, B., C. Le Marrec, A. Hadj Sassi and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61:193-197. Jiang, P. L., H. J. Lin, H. W. Wang, Wen. Y. Tsai, S. F. Lin, M. Y. Chien, P. H. Liang, Y. Y. Huang and D. Z. Liu. 2015. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater. 11:356-367. Jin, H. H., Q. Lu, and J. G. Jiang. 2016. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. J. Dairy Sci. 99:1780-1790. Kanno, C., Y. Shimomura and E. Takano. 1991. Physicochemical properties of milk fat emulsions stabilized with bovine milk fat globule membrane. J. Food Sci. 56:1219-1223. Kralj, M., and N. Pipan. 1992. The role of exocytosis in the apocrine secretion of milk lipidglobules in mouse mammary gland during lactogenesis. Biol. Cell. 75:211-216. Kvistgaard, A. S., L. T. Pallesen, C. F. Arias, S. Lopez, T. E. Petersen, C. W. Heegaard and J. T. Rasmussen. 2004. Inhibitory effect of human and bovine milk constituents on rotavirus infections. J. Dairy Sci. 87:4088-4096. Laloy, E., J. Vuillemard, M. E. Soda, and R. E. Simard. 1996. Influence of the fat content of cheddar cheese on retention and localization of starters. Int. Dairy J. 6:729-740. Le, T. T., J. Van Camp, R. Rombaut, F. V. Leeckwyck and K. Dewettinck. 2009. Effect of washing conditions on the recovery of milk fat globule membrane proteins during the isolation of milk fat globule membrane from milk. J. Dairy Sci. 92:3592-3603. Le, T. T., T. Van de Wiele, T. N. H. Do, G. Debyser, K. Struijs, B. Devreese, K. Dewettinck and J. Van Camp. 2012. Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion. J. Dairy Sci. 95:2307-2318. Le, T. T., G. Debyser, W. Gilbert, K. Struijs, J. Van Camp, T. Van de Wiele, B. Devreese and K. Dewettinck. 2013. Distribution and isolation of milk fat globule membrane protein during dairy processing as revealed by proteomic analysis. Int. Dairy J. 32:110-120. Lopez, C., M. B. Maillard, V. Briard-Bion, B. Camier, and J. A. Hannon. 2006. Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria. J. Agric. Food Chem. 54:5855-5867. Lopez, C., M. N. Madec and R. Jiménez-Flores. 2010. Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chem. 120:22-33. Lopez, C. 2011. Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Curr. Opin. Colloid Interface Sci. 16:391-404. Lopez, C., C. Cauty and F. Guyomarc'h. 2015. Organization of lipids in milks, infant milk formulas and various dairy products: role of technological processes and potential impacts. Dairy Sci. & Technol. 95:863-893. Lopez, C., C. Cauty, F. Rousseau, M. Blot, A. Margolis and M. H. Famelart. 2017. Lipid droplets coated with milk fat globule membrane fragments: Microstructure and functional properties as a function of pH. Food Res. Int. 91:26-37. Liu, W., A. Ye, C. Liu, W. Liu, and H. Singh. 2012. Structure and integrity of liposomes prepared from milk or soybean-derived phospholipids during in vitro digestion. Food Res. Int. 48:499-506. Liu, B., Z. Yu, C. Chen, D. E. Kling and D. S. Newburg. 2012. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro. J. Nutr. 142:1504-1509. Ly, M. H., N. H. Vo, T. M. Le, J. M. Belin and Y. Waché. 2006. Diversity of surface properties of Lactococci and consequences on adhesion to food components. Colloids Surf. B Biointerfaces. 52:149-153. Markworth, J. F., B. Durainayagam, V. C. Figueiredo, K. Liu, J. Guan, A. K. H. MacGibbon, B. Y. Fong, A. C. Fanning, A. Rowan, P. McJarrow and D. Cameron-Smith. 2017. Dietary supplementation with bovine derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr. Metab. 14:9. Mather, I. M. 2000. A review and proposed nomenclature for major proteins of the milk fat globule membrane. J. Dairy Sci. 83:203-247. Mather, I. M. 2011. Milk Lipids: Milk fat globule membrane. Page 680-690 in Encyclopedia of Dairy Sciences. J. W. Fuquay, 2 ed. Academic Press. San Diego, CA, USA. McGann, T. C. A., and P. F. Fox. 1974. Physico-chemical properties of casein micelles reformed from urea-treated milk. J. Dairy Res. 41:45-53. Motouri, M., H. Matsuyama, J. I. Yamamura, M. Tanaka, S. Aoe, T. Iwanaga and H. Kawakami. 2003. Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. J. Pediatr. Gastr. Nutr. 36:241-274. Moicinovic, J., T. T. Le, E. Fredrick, P. Van der Meeren, P. Pudja and K. Dewettinck. 2014. A comparison of composition and emulsifying properties of MFGM materials prepared from different dairy sources by microfiltration. Food Sci. Technol. Int. 20:441-451. Morin, P., R. Jiménez-Flores and Y. Pouliot. 2004. Effect of temperature and pore size on the fractionation of fresh and reconstituted bttermilk by microfiltration. J. Dairy Sci. 87:267-273. Morin, P., Y. Pouliot and R. Jiménez-Flores. 2006. A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. J. Food Eng. 77:521-528. Morin, P., M. Britten, R. Jiménez-Flores and Y. Pouliot. 2007a. Microfiltration of buttermilk and wash cream buttermilk for concentration of milk fat globule membrane composition. J. Dairy Sci. 90:2132-2140. Morin, P., M. Britten, R. Jiménez-Flores and Y. Pouliot. 2007b. Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. Int. Dairy J. 17:1179-1187. Nilsson, A. 2016. Role of sphingolipids in infant gut health and immunity. J. Pediatr. 173:S53-S59. Noh, S. K., and S. I. Koo. 2003. Egg sphingomyelin lowers the lymphatic absorption of cholesterol and alpha-tocopherol in rats. J Nutr. 133:3571-3576. Noh, S. K., and S. I. Koo. 2004. Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. J. Nutr. 134:2611-2616. Novakovic, P., Y. Y. Huang, B. Lockerbie, F. Shahriar, J. Kelly, J. R. Gordon, D. M. Middleton, M. E. Loewen, B. A. Kidney and E. simko. 2015a. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane. Can. J. Vet. Res. 79:120-128. Novakovic, P., C. Charavaryamath, I. Moshynskyy, B. Lockerbie, R. S. Kaushik, M. E. Loewen, B. A. Kidney, C. Stuart and E. simko. 2015b. Evaluation of inhibition of F4ac positive Escherichia coli attachment with xanthine dehydrogenase, butyrophilin, lactadherin and fatty acid binding protein. BMC Vet. Res. 11:238-248. O'Connell, J. E., A. L. Kelly, M. A. E. Auty, P. F. Fox and K. G. de Kruif. 2001a. Ethanol-dependent temperature-induced dissociation of casein micelles. J. Agric. Food Chem. 49:4420-4423. O'Connell, J. E., A. L. Kelly, P. F. Fox and K. G. de Kruif. 2001b. Mechanism for the ethanol-dependent heat-induced dissociation of casein micelles. J. Agric. Food Chem. 49:4424-4428. Ogg, S. L., A. K. Weldon, L. Dobbie, A. J. H. Smith and I. H. Mather. 2004. Expression of butyrophilin (Btn1a1) in lactating mammary glandis essential for the regulate dsecretion of milk-lipid droplets. Proc. Natl. Acad. Sci. USA 101:10084-10089. Ohlsson, L., H. Burling and A. Nilsson. 2009. Long term effects on human plasma lipoproteins of a formulation enriched in butter milk polar lipid. Lipids Health Dis. 8:44. Oshida, K., T. Shimizu, M. Takase, Y. Tamura, T. Shimizu and Y. Yamashiro. 2003. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr. Res. 53:589-593. Park, J. S., C. K. Choi and K. D. Kihm. 2004. Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp. Fluids. 37:105-119. Parker, P., L. Sando, R. Pearson, K. Kongsuwan, R. L. Tellam and S. Smith. 2010. Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells. Glycoconj. J. 27:89-97. Prado, M. R., L. M. Blandón, L. P. S. Vandenberghe, C. Rodrigues, G. R. Castro, V. T. Soccol and C. R. Soccol. 2015. Milk kefir: composition, microbial cultures, biological activities, and related products. Front. Microbiol. 30:1-10. Ramprasath, V. R., P. J. H. Jones, D. D. Buckley, L. A. Woollett and J. E. Heubi. 2013. Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans. Lipids Health Dis. 12:125. Raymond, A., M. A. Ensslin and B. D. Shur. 2009. SED1/MFG-E8: a bi-motif protein that orchestrates diverse cellular interactions. J. Cell. Biochem. 106:957-966. Roesch, R. R., A. Rincon and M. Corredig. 2004. Emulsifying properties of fractions prepared from commercial buttermilk by microfiltration. J. Dairy Sci. 87:4080-4087. Rombaut, R., V. Dejonckheere and K. Dewettinck. 2006. Microfiltration of butter serum upon casein micelle destabilization. J. Dairy Sci. 89:1915-1925. Rombaut, R., V. Dejonckheere and K. Dewettinck. 2007. Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey. J. Dairy Sci. 90:1662-1673.   Rombaut, R. and K. Dewettinck. 2007. Thermocalcic aggregation of milk fat globule membrane fragments from acid buttermilk cheese whey. J. Dairy Sci. 90:2665-2674. Rosqvist, F., A. Smedman, H. Lindmark-Mansson, M. Paulsson, P. Petrus, S. Straniero, M. Rudling, I. Dahlman and U. Risérus. 2015. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am. J. Clin. Nutr. 102:20-30. Ross, S. A., J. A. Lane, M. Kilcoyne, L. Joshi and R. M. Hickey. 2016. Defatted bovine milk fat globule membrane inhibits association of enterohaemorrhagic Escherichia coli O157:H7 with human HT-29 cells. Int. Dairy J. 59:36-43. Sachdeva, S. and W. Buchheim. 1997. Recovery of phospholipids from buttermilk using membrane processing. Kieler Milchw. Forsch. 49:47-68. Sandra, S., M. Ho, M. Alexander and M. Corredig. 2012. Effect of soluble calcium on the renneting properties of casein micelles as measured by rheology and diffusing wave spectroscopy. J. Dairy Sci. 95:75-82. Singh, H. 2006. The milk fat globule membrane - A biophysical system for food application. Curr. Opin. Colloid Interface Sci. 11:154-163. Spitsberg, V. L. 2005. Invited review: Bovine milk fat globule membrane as a potential nutraceutical. J. Dairy Sci. 88:2289-2294. Struijs, K., T. Van de Wiele, T. T. Le, G. Debyser, K. Dewettinck, B. Devreese and J. Van Camp. 2013. Milk fat globule membrane glycoproteins prevent adhesion of the colonic microbiota and result in increased bacterial butyrate production. Int. Dairy J. 32:99-109. Tellez, A., M. Corredig, A. Guri, R. Zanabria, M. W. Griffiths and V. Delcenserie. 2012. Bovine milk fat globule membrane affects virulence expression in Escherichia coli O157:H7. J. Dairy Sci. 95:6313-6319. Tercinier, L., A. Ye, S. G. Anema, A. Singh and H. Singh. 2013. Adsorption of milk proteins on to calcium phosphate particles. J. Colloid Interf. Sci. 394:458-466. Tercinier, L., A. Ye, S. G. Anema, A. Singh and H. Singh. 2014. Interactions of casein micelles with calcium phosphate particles. J. Agric. Food Chem. 62:5983-5992. Thomas, A., and C. T. Sathian. 2014. Cleaning-In-Place (CIP) System in dairy plant-review. IOSR-JESTFT. 8:41-44. Thompson, A. K., and H. Singh. 2006. Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. J. Dairy Sci. 89:410-419. Thompson, A. K., D. Haisman and H. Singh. 2006a. Physical stability of liposomes prepared from milk fat globule membrane and soya phospholipids. J. Agric. Food Chem. 54:6390-6397. Thompson, A. K., J. P. Hindmarsh, D. Haisman, T. Rades, and H. Singh. 2006b. Comparison of the structure and properties of liposomes prepared from milk fat globule membrane and soy phospholipids. J. Agric. Food Chem. 54:3704-3711. Thompson, A. K., M. R. Mozafari and H. Singh. 2007. The properties of liposomes produced from milk fat globule membrane material using different techniques. Lait 87:349-360. Thompson, A. K., A. Couchoud, and H. Singh. 2009. Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy Sci. Technol. 89:99-113. Timby, N., E. Domellöf, O. Hernell, B. Lönnerdal and M. Domellöf. 2014. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am. J. Clin. Nutr. 99:860-868. Udabage, P., I. R. McKinnon and M. A. Augustin. 2000. Mineral and casein equilibria in milk: effects of added salts and calcium-chelating agents. J. Dairy Res. 67:361-370. Vorbach, C., A. Scriven and M. R. Capecchi. 2002. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 16:3223-3235. Wang, X. S., Hirmo, R. Willén and T. Wadström. 2001. Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BALB/cA mouse model. J. Med. Microbiol. 50:430-435. Wooding, F. B. P. 1971. The mechanism of secretion of the milk fat globule. J. Cell Sci. 9:805-821. Ye, A., H. Singh, M. W. Taylor, and S. Anema. 2002. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 12:393-402. Yolken, R. H., J. A. Peterson, S. L. Vonderfecht, E. T. Fouts, K. Midthun and D. S. Newburg. 1992. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90:1984-1991. Zadow, J. G. 1993. Alcohol-mediated temperature-induced reversible dissociation of the casein micelle in milk. Aust. J. Dairy Technol. 48:78-81. Zheng, H., R. Jiménez-Flores and D. W. Everett. 2013. Bovine milk fat globule membrane proteins are affected by centrifugal washing processes. J. Agric. Food Chem. 61:8403-8411. Zheng, H., R. Jiménez-Flores and D. W. Everett. 2014. Lateral lipid organization of the bovine milk fat globule membrane is revealed by washing processes. J. Dairy Sci. 97:5964-5974.
摘要: 本研究利用氫氧磷灰石 (hydroxyapatite) 可解離與吸附乳蛋白質的特性,針對酪乳 (buttermilk) 原料進行前處理,藉以提升微過濾 (microfiltration) 對乳脂肪球膜 (milk fat globule membrane;MFGM) 的分離效果,同時探討由此製程所獲得之產物與乳酸菌的吸附現象以及是否可增進乳酸菌對耐酸與耐膽鹽之特性。試驗使用國立中興大學畜產試驗場生乳經乳脂分離 (cream separation) 以及攪打 (churning) 製成酪乳,隨後冷凍乾燥為酪乳粉並回溶至9% (w/v) 以供研究使用。經標準化的酪乳以1410 ×g離心5分鐘去除脂肪後分為5% 氫氧磷灰石處理組 (HA)、2%檸檬酸鈉處理組 (SC) 以及對照組進行前處理,其中氫氧磷灰石處理組於室溫攪拌2小時,再以1410 ×g離心5分鐘移除氫氧磷灰石顆粒;檸檬酸鈉處理組則於4℃反應至隔日。經前處理後,各處理組與控制組以逆滲透水4倍稀釋,隨後使用0.2 μm 孔徑之陶瓷濾膜以43 psi過膜壓力進行4次滲濾 (diafiltration) 操作之掃流式微過濾以獲得富含MFGM的產物。結果顯示以HA前處理之MFGM其總碳水化合物、膽鹼相關磷脂與粗蛋白質回收率分別為1.25 ± 0.51%、56.67 ± 9.85%與60.81 ± 5.07%,顯示HA前處理於微過濾後可有效截留乳脂肪球膜磷脂成分以及具有良好的醣類去除能力;SDS-PAGE結果中亦指出HA前處理組的微過濾分離物相較於對照組與SC前處理者具有較低之酪蛋白與乳清蛋白含量,且其乳脂肪球膜蛋白所占比例較高,顯示此類製程具有較佳之分離效率。於MFGM吸附乳酸菌特性部分,先以十六烷進行菌株表面疏水性之篩選並鑑定後獲得親水性與疏水性菌株各一,分別為 Lactobacillus plantarum ATCC 14917以及 Lactobacillus casei Y310,經螢光染色並以共軛焦雷射掃描顯微鏡 (confocal laser scanning microscopy; CLSM) 可觀察到其中親水性乳酸菌 (Lb. plantarum ATCC 14917) 具有吸附至乳脂肪球表面的能力,並於MFGM溶液中可觀察到菌體聚集的現象。進一步對此具吸附性的菌株進行耐酸與耐膽鹽特性分析,其結果指出由HA前處理配合微過濾所分離之乳脂肪球膜可分別於pH 3與0.3% 膽鹽濃度之模擬胃腸道環境中增進菌株的存活性,且此現象隨分離物添加量上升而呈現劑量依賴性。綜觀上述,HA前處理配合微過濾可有效分離酪乳中的乳脂肪球膜,相對現行之SC前處理者具有較佳的乳脂肪球膜蛋白分離性,同時此類製程所獲得之分離物具有結合聚集乳酸菌的特性以及增進其耐酸與耐膽鹽的能力。
The aim of this study was to develop a novel milk fat globule membrane (MFGM) isolation method by using hydroxyapatite pretreatment and microfiltration. The interaction between lactic acid bacteria and the MFGM material was also evaluated. Raw milk was obtained from experimental farm of National Chung Hsing University and the cream was further separated following by churning into buttermilk. The freeze-dried buttermilk powder was reconstituted into 9% weight by volume and centrifuged in 1410 ×g for 5 minutes to remove the remaining fat globules before use. Reconstituted buttermilk was divided into three experiment groups: (1) 5% hydroxyapatite stirring for 2 hour in room temperature, (2) 2% sodium citrate standing overnight in 4℃ and (3) untreated control. All the pretreated samples were four folds diluted and conducted through a 0.2 μm crossflow ceramic microfiltration system under 43 psi transmembrane pressures with four diafiltration steps. The recovery rate of total carbohydrate, choline-contained phospholipids and crude protein were 1.25 ± 0.51%, 56.67 ± 9.85% and 60.81 ± 5.07% respectively. These results indicate that hydroxyapatite pretreatment combining with microfiltration is able to retain phospholipids and remove lactose in the buttermilk efficiently. The protein profiles of MFGM material in SDS-PAGE were shown that the distribution of caseins and whey proteins were obviously less in hydroxyapatite pretreatment group than others, which suggesting a higher MFGM separation efficiency was observed. To investigate the interaction between MFGM and lactic acid bacteria by confocal laser scanning microscopy, Lactobacillus plantarum ATCC 14917 and Lactobacillus casei were selected due to its low and high surface hydrophobicity respectively. The results showed that Lb. plantarum ATCC 14917 had the ability to adhere to the milk fat globule surface and aggregated in the MFGM material. There was also shown that MFGM material could increase acid and bile tolerance of L. plantarum in a dose-dependent manner at pH 3 and 0.3% bile conditions. Above all, the hydroxyapatite pretreatment combining with microfiltration might be an efficiency way to isolate MGFM comparing to other methods. Besides, the MFGM material obtained from this process shows the potential to protect lactic acid bacteria species against acid and bile challenge.
文章公開時間: 2020-08-14
Appears in Collections:動物科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.