Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96973
標題: 枯草桿菌應用於作物栽培之功效評估
The efficacy assessments of Bacillus subtilis application in crops planting
作者: 黃明發
Ming-Fa Huang
關鍵字: 植物促進生長根圈細菌
枯草桿菌
生物肥料
PGPR
Bacillus subtilis
Biofertilizers
引用: 王淳禾。2006。枯草桿菌Bacillus subtilis WG6-14懸浮培養增量菌夜製作及病害管理之應用。國立中興大學植物病理學研究所碩士論文。59頁。 李雅惠。2002。拮抗性桿菌屬 (Bacillus spp.) 之分離、培養與抗生活性之改進以及病害防治之應用。國立中興大植物病理學研究所碩士論文。79頁。 史文娟、梁嘉平、陶汪海、潭帥、王全九。2015。添加r-聚谷氨酸減少土壤水分深層滲漏提高持水能力。農業工程學報 31(23): 94-100。 行政院農委會。2016。農業統計年報。 http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx 吳佳樺。2010。聚麩胺酸量產於枯草桿菌特殊功能生物殺菌劑發展之應用。國立中興大學植物病理學研究所碩士論文。78頁。 林雅涵。2015。茶與百香果炭疽病之拮抗微生物鑑定及其於病害防治應用潛力。國立中興大學植物病理學研究所碩士論文。90頁。 胡正榮。2012。健康安全的平民蔬菜-葉菜甘藷。花蓮區農業專訊 79(3):10-12。 張碧芳。2004。植物重要防疫檢疫病害診斷技術研習會專刊(三)。頁119-156。 張廣淼、蔡正賢、吳添益。2007。肥料用量對高架草莓生育及產量之影響。苗栗區農業改良場。研究彙報1: 01-14。 張廣淼、彭淑貞、黃勝泉。2009。草莓產業的發展及展望。苗栗區農業專訊 48:2-4。 賴文龍、趙佳鴻。2010。結球白菜肥培管理。臺中區農業改良場特刊。頁1-4。 戴振洋、陳榮五、蔡宜峰。2009。牛番茄介質耕栽培技術。農業世界307:78-88。 戴振洋、蔡宜峰、陳俊位、蔡正宏。2012。有機農業-番茄穴盤苗生產技術之開發應用。有機農業研究團隊研發成果研討會專刊。頁245-246。 謝明芳。2012。結球白菜高溫淹水耐受性之篩選及生理反應。國立台灣大學園藝學研究所。100頁。 謝明憲、劉依昌、許涵鈞、林棟樑、王仕賢。2008。十字花科蔬菜耐熱育種及採種。農業生技產業應用研討會專刊。頁67-78。 羅國偉。2012。草莓產業概況。桃園區農業技術專輯。9:1-5。 Abd El-Daim, Islam A., Bejai S. and Meijer, J. 2014. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment, Plant Soil. 379: 337–350. Aris, T. W., Rina, P. A., Asri, W., Anja, M. and Abdjad, A. N. 2011. Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J. Microbio. Antimicrob. 3: 34-40. Arkhipova, T. N., Veselov S. U., Melentiev, A. I., Martynenko, E. V. and Kudoyarova, G.R. 2005. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil. 272: 201-209. Aslantas, R., Cakmakci R. and Sahin F. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Hortic. 111: 371-377. Bais, H. P., Ray, F. and Jorge, M. V. 2004. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319. Beever, R. E. and Bollard, E. G. (1970). The nature of the stimulation of fungal growth by potato extract. Microbiology. 60: 273-279. Bresson, J., Vasseur, F., Dauzat, M., Labadie, M.. Varoquaux, F., Touraine, B. and Vile, D. 2014. Interact to survive: phyllobacterium brassicacearum improves arabidopsis tolerance to severe water deficit and growth recovery. PLoS ONE. 9(9): e107607. Choudhary, D. K. and Johri, B. N. 2009. Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiol. Res. 164: 493-513. Comas, L. H., Becker, S.R., Von Mark, V. C., Byrne, P. F. and Dierig, D. A. 2013. Root traits contributing to plant productivity under drought. Front. Plant Sci. 4:442. de Melo Pereira, G. V., Magalhães, K. T., Lorenzetii, E. R., Souza, T. P., & Schwan, R. F. (2012). A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb. ecol. 63: 405-417. Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. 171: 1-9. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29: 185-212. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Ann. Rev. Phytopathol. 43: 337-359. Garcia-Fraile, P., Menendez, E. and Rivas, R. 2015. Role of bacteria biofertilizers in agriculture and forestry. AIMS Bioengineering. 2: 183-205. Glick, B. R., Karaturovíc, D. M. and Newell, P. C. 1999. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. Microbiol. 41: 533-536. Grover, M., Madhubala, R., Ali, S.Z., Yadav, S.K. and Venkateswar, B. 2014. luInfluence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J. Basic Micribiobiol. 54: 951-961. Günes, A., Ataoğlu, N. T., Esitken, A M. and Ketterings, Q. M. 2009. Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J. Plant Nutr. Soil Sci. 172: 385-392. Gururani, M. A. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A. and Park, S.W. 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul. 32: 245-258. Hasanuzzaman, M., Nahar, K., Gill, S. S., Tuteja, N. and Fujita, M. 2014. Drought stress responses in plants, oxidative stress and antioxidant defense. In: Tuteja, N., Gill S.S.(Eds), Climate Change and Plant Abiotic Stress Tolerance. Wiley-VCH Verlag GmbH & Co. KGaA. 209-249. Hortencia, G. M. V. and Víctor, O. P. 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic. 113: 103-106. Kloepper, J. W., Eong, J., Teintze, M. S. and Milton, N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature. 286: 885-886. Kloepper, J.W., Zablotowick, R.M., Tipping, E.M. and Lifshitz, R. 1991. Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister, D.L., Cregan, P.B. (Eds.), The Rhizosphere and Plant Growth. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 315–326. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistence and promotion of plant growth by Bacillus spp. Phytopathology. 94: 1259-1266. Kloepper, J. W., Reddy, M. S., Rodríguez-Kabana, R., Kenney, D. S., Kokalis-Burelle, N., Martinez-Ochoa, N. and Vavrina, C. S. 2004. Application for rhizobacteria in transplant production and yield enhancement. Acta Horticulturae, 217-230. Kumar, S., Chandra, A. and Pandey, K. C. 2008. Bacillus thuringiensis (Bt) transgenic crop: an environmentally friendly insect-pest management strategy. J. Environ. Biol. 29: 641-653. Lesk, C., Rowhani, P. and Ramankutty, N. 2016. Influence of extreme weather disasters on global crop production. Nature. 529: 84-87. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 Lütfi, P. and Murat, K. 2009. Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J. Plant Nutr. 32: 1173-1184. Maarten, H., Ryder, Z. Y., Teri, E. T., Albert, D. R., Wenhua, T. and Raymond, L.C. 1999. Use of strains of Bacillus isolated in china to suppress take-all and rhizoctonia root rot, and promote seeding growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 31: 19-29. Margarita, K., Martin, T. and Fergus, G. P. 2001. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl. Environ. Microbiol. 67: 1004-1007. Mazid, S., Kalida, J. C. and Rajkhowa, R. C. 2011. A review on the use of biopesticides in insect pest management. Int. J. Sci. Adv. Technol. 1: 169-178. Naseem, H. and Bano, A. 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interact. 9: 689-701. Nelson, E. B. 2004. Biological Control of oomycetes and fungal pathogens. Encyclopedia of Plant and Crop Science. 137-140. Nofal, M. A. and Wafaa, M. H. 2006. Integrated management of powdery mildew of mango in Egypt. Crop Prot. 25: 480-486. Ongena, M., Emmanuel, J., Akram, A., Michel, P., Alain, B., Bernard, J., Jean-Louis, A. and Philippe, T. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. Ongena, M. and Philippe, J. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology. 16: 115–125. Roh, J. Y., Choi, J. Y., Li, M. S., Jin, B. R. and Je, Y. H. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559. Romero, D., de Vicente, A., Zeriouh, H., Cazorla ,F. M., Fernández-Ortuño, D., Torés, J.A. and Pérez-García, A. 2007. Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathol. 56: 976-986. Schallmey, M., Singh, A. and Ward, O. P. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. Sharma, R. R., Dinesh, S. and Rajbir, S. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control. 50: 205-221. Sinclair, T. R. and Muchow, R. C. 2001. System analysis of plant traits to increase grain yield on limited water supplies. Agron. J. 93: 263-270. Sivasakthi, S., Kanchana, D., Usharani, G. and Saranraj, P. 2013. Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolates from Paddy rhizosphere soil of Cuddalore District, Tamil Nadu, India. Intl. J. Microbiol. Res. 4: 227-233. Tarui, Y., Iida, H., Ono, E., Miki, W., Hirasawa, E., Fujita, K. I., Tanaka, T., and Taniguchi1, M. 2005. Biosynthesis of poly-γ-glutamic acid in plants: Transient expression of poly-γ-glutamate synthetase complex in tobacco leaves. J. Biosci. and Bioeng. 100: 443-448. Thimon, L., Peypoux, F., Wallach, J. and Michel, G. (1995) Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cell. FEMS Microbiol Lett. 128: 101–106. Thorne, C. B. and Leonard, C. G. 1958. Isolation of D-and L-glutamyl polypeptides from culture filtrates of Bacillus subtilis. J. Biol. Chem. 233: 1109-1112. Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., and Netrusov, A. I. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochemi Microbiol. 42: 117-126. Vacheron, J., Desbrosses, G., Bouffaud, M., Touraine, Y. M. L. B., Muller, D., Legendre, L., Wisniewski-Dyé, F. and Prigent-Combaret, C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4: 1-19. Valencia-Cantero, E., Hernández-Calderón, E., Velázquez-Becerra, C., López-Meza J.E., Alfaro-Cuevas R. and López-Bucio, J. 2007. Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil. 291: 263-273. Vardharajulaa S., Alia, S. Z., Grovera, M., Reddyb, G. and Bandia, V. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6: 1-14. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255: 571-586. Yasar, E., Sezai E., Ayhan, H. and Ramazan, C. 2010. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol. Res. 43: 91-98. Zaidi, S., Usmani, S., Singh, B. R. and Musarrat, J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere. 64: 991-997.
摘要: 慣行農業過度仰賴使用化學肥料和農藥以達到提高收穫之目的,但造成環境汙染,自然生態循環和生物多樣性的破壞。由植物根圈分離出的植物促進生長根圈細菌(Plant Growth Promotion Rhizobacteria, PGPR)成為農業永續發展最新且具潛力的天然資材,可透過生長促進、與致病菌競爭作用、分泌抗生物質和誘導植株產生抗病的機制,達到促進植物健康成長的功效。Bacillus屬菌株為常見的PGPR,目前已被應用做為生物肥料、生物農藥和生物刺激劑等用途。本研究的目的是將由本土植物根圈分離篩選出的有益枯草桿菌151-B1、TKS1-1及SP4-17菌株之功能性營養液應用於作物栽培,探討其對台灣重要作物如:結球白菜、葉用甘藷、番茄及草莓等產生之功效評估。結果顯示枯草桿菌151-B1菌株之應用可以促進結球白菜根系發育,提升高溫逆境的適應能力並且改善結球品質。比較枯草桿菌151-B1、 TKS1-1及SP4-17菌株對番茄苗植株生長之影響,可見枯草桿菌151-B1、TKS1-1及SP4-17菌株之施用顯著較水處理具根系發育促進之功效,可分別增加根部之乾重達186 %、151 %及70 %。而SP4-17菌株則較其他菌株具較佳之株高促進作用,可以促進植株高度達23 %。應用此三株枯草桿菌株之對葉用甘藷亦皆可以增加50 %的莖葉長度。在根部的乾重和對照組比較,結果顯示處理151-B1、TKS1-1及SP4-17菌株之平均重量分別可增加90.9 %、46.9 %及30.7 %,明顯較處理水之對照組佳。其中又以枯草桿菌TKS1-1及 SP4-17菌株對栽培葉用甘藷土壤之保濕性較佳。施用於草莓之栽培,枯草桿菌151-B1、TKS1-1及SP4-17菌株,皆可以提升40 %的總生產量,對草莓提早進入開花期和提升植株平均產量都具有顯著功效。本研究證實由本土植物根圈分離出之有益微生物,枯草桿菌151-B1、 TKS1-1及SP4-17具PGPR的特性,而且具廣譜性的促進試驗中所測試作物植株生長之功效,未來深具應用作為生物肥料的潛力。
Over-dependence on chemical fertilizers and pesticides for achieving high yield in agriculture resulted in environmental pollution, and posted threat to natural ecological cycling and biodiversity. The plant growth promotion rhizobacteria (PGPR) is the most potential nature resources for sustainable development of agriculture. The mechanisms of PGPR include the plant growth promoting, competing with pathogens, producing anti-biotics and inducing systemic resistance. Bacillus species were most popular PGPR and have been used as biofertilizers, biopesticides and biostimulants in agriculture. Bacillus subtilis 151-B1, TKS1-1 and SP4-17 are beneficial microbes isolated from the local plant rhizosphere. The objectives of this study were to assess the efficacy of application of 151-B1, TKS1-1 and SP4-17 functional nutrient formulation (FNF) application on four important crops in Taiwan including Chinese cabbage, sweet potato, tomato and strawberry. Results indicated B. subtilis 151-B1 can promote the root development of the Chinese cabbage, improve the tolerance to high temperature stress and improve leaf compactness of the cabbage. Comparison of the application of B. subtilis 151-B1, TKS1-1 and SP4-17 on tomato plants, B.subtilis 151-B1, TKS1-1 and SP4-17 promoted the root development of tomato seedlings and increased 186 %, 151 % and 70 %, respectively of root dry weight compared to the water control. SP4-17 can promote plant height by 23%. B. subtilis 151-B1, TKS1-1, SP4-17 can increase 50 % of the leaf and stem length in sweet potato, among which B. subtilis TKS1-1 and SP4-17 showed better retention moisture content in soil planting sweet potato. In addition, application of strains 151-B1, TKS1-1, SP4-17 FNF significantly increased the root dry weights by 90.9 %, 46.9 % and 30.7 % respectively compared to the control. For application on strawberry plant, B. subtilis 151-B1, TKS1-1, SP4-17 FNF can increase 40 % of the total yield, shorten the duration to the first flowering period, increase the average yield of strawberry fruits. In conclusion, the B. subtilis 151-B1, TKS1-1, SP4-17 isolated from the local plant rhizosphere, showed characteristics growth promoting pattern as PGPR and has broad spectrum of efficacy on four tested crops. Thus, the three strains exhibited potential as biofertilizers.
URI: http://hdl.handle.net/11455/96973
文章公開時間: 2020-08-21
Appears in Collections:農業企業經營管理碩士在職專班

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.