Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97032
標題: 電動車無線充電同時資料傳送裝置
Simultaneous Wireless Power Charging and Data Transfer for Electric Vehicles
作者: 黃志誠
Chih-Cheng Huang
關鍵字: 電磁感應
無線充電
同時無線能量及資料傳送
電動車
換流器
零電壓切換
Electromagnetic Induction
Wireless power transfer
Simultaneous power data transmission
Electric vehicle
Inverter
Zero voltage switch.
引用: [1] “Faraday''s law of induction,” en.wikipedia.org/wiki/Faraday_law_of_induction. [2] Sadiku, M. N. O. (2014). Elements of Electromagnetics (6th ed.). Oxford University Press. p. 869. ISBN13:9780199321384. [3] Rao N. N., Elements of Engineering Electromagnetics (6th ed.). Prentice Hall. p.788. ISBN13:9780131139619. [4] Morgan K. Ampere’s Law. physnet.org/modules/pdf_modules/m138.pdf [5] A. Zaheer, G. A. Covic and D. Kacprzak, “A Bipolar Pad in a 10-kHz 300-W Distributed IPT System for AGV Applications,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3288-3301, Jun. 2014. [6] F. Lu, H. Zhang, H. Hofmann and C. C. Mi, “A Dynamic Charging System With Reduced Output Power Pulsation for Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6580-6590, Oct. 2016. [7] C. Zheng, H. Ma, J. S. Lai and L. Zhang, “Design Considerations to Reduce Gap Variation and Misalignment Effects for the Inductive Power Transfer System,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6108-6119, Nov. 2015. [8] J. Deng, W. Li, T. D. N. S. Li and c. C. Mi, “Compact and Efficient Bipolar Coupler for Wireless Power Chargers: Design and Analysis,” IEEE Trans.Power Electron., vol. 30, no. 11, pp. 6130-6140, Nov. 2015. [9] S. Li and C. C. Mi “Wireless Power Transfer for Electric Vehicle Applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4-17, Mar. 2015. [10] M. Budhia, J. T. Boys, G. A. Covic and H. Chang-Yu, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318–328, Jan. 2013. [11] R. Bosshard and J. W. Kolar, “Multi-Objective Optimization of 50 kW/85 kHz IPT System for Public Transport,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 4, pp. 1370–1382, Dec. 2016. [12] R. Bosshard and J. W. Kolar, “All-SiC 9.5 kW/dm3 On-Board Power Electronics for 50 kW/85 kHz Automotive IPT System,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 1, pp. 419–431, Mar. 2017. [13] R. Bosshard, U. Iruretagoyena and J. W. Kolar, “Comprehensive Evaluation of Rectangular and Double-D Coil Geometry for 50 kW/85 kHz IPT System,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 4, pp. 1406–1415, Dec. 2016. [14] A. Q. Cai and L. Siek, “A 2-kW, 95% Efficiency Inductive Power Transfer System Using Gallium Nitride Gate Injection Transistors,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 1, pp. 458-468, Mar. 2017. [15] G. A. Covic and J. T. Boys, “Modern Trends in Inductive Power Transfer for Transportation Applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 28-41, Mar. 2013. [16] T. Diekhans and R. W. D. Doncker, “A Dual-Side Controlled Inductive Power Transfer System Optimized for Large Coupling Factor Variations and Partial Load,” IEEE Trans.Power Electron., vol. 30, no. 11, pp. 6320-6328, Nov. 2015. [17] T. Bieler, M. Perrottet, V. Nguyen and Y. Perriard, “Wireless power and data transmission,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 1266–1272, Sep. 2002. [18] J. Wu, C. Zhao, Z. Lin, J. Du, Y. Hu and X. He, “Wireless power and data transfer via a common inductive link using frequency division multiplexing,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7810–7820, Dec. 2015. [19] C. S. Wang, O. H. Stielau and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005. [20] X. Qu, H. Han, S. C. Wong, C. K. Tse and W. Chen, “Hybrid IPT topologies with constant current or constant voltage output for battery charging applications,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6329-6337, Nov. 2015. [21] G. R. Nagendra, G. A. Covic and J. T. Boys“Sizing of Inductive Power Pads for Dynamic Charging of EVs on IPT Highways,” IEEE Trans. Electrification., vol. 3, no. 2, pp. 405-417, Jun. 2017. [22] E. A. Mehdi, K. Chma and J. Stefani, “Rapid-charge electric-vehicle stations,” IEEE Trans. Power Delivery, vol. 25, no.3, pp. 1883-1887, Jul. 2010. [23] C. H. Ou, H. Liang and W. Zhuang, “Investigating wireless charging and mobility of electric vehicles on electricity market,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3123-3133, May. 2015. [24] S. Weearsinghe, D. J. Thrimawithana and U. K. Madawala, “Modeling Bidirectional Contactless Grid Interfaces With a Soft DC-Link,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3528-3541, Jul. 2015. [25] U. K. Madawala, M. Neath and D. J. Thrimawithana, “A Power–frequency controller for bidirectional inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 310-317, Jan. 2013. [26] D. J. Thrimawithana, U. K. Madawala and M. Neath, “A synchronization technique for bidirectional IPT systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 301-309, Jan. 2013. [27] U. K. Madawala and D. J. Thrimawithana, “A bidirectional inductive power interface for electric vehicles in V2G systems,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4789–4796, Oct. 2011. [28] Y. Ma, T. Houghton, A. Cruden and D. Infield, “Modeling the benefits of vehicle-to-grid technology to a power system,” IEEE Trans. Power syst. vol. 27, no. 2, pp. 1012–1020, May. 2012. [29] Y. Jang and M. M. Jovanovic, “A Contactless Electrical Energy Transmission System for Portable-Telephone Battery Chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520–527, Jun. 2003. [30] G. B. Joun and B. H. Cho, “An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1013–1022, Nov. 1998. [31] Q. Xu, D. Hu, B. Duan, and J. He, “A fully implantable stimulator with wireless power and data transmission for experimental investigation of epidural spinal cord stimulation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 4, pp. 683–692, Jul. 2015.. [32] S. Jeong, Y. J. Jang and D. Kum, “Economic Analysis of the Dynamic Charging Electric Vehicle,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6368–6377, Nov. 2015. [33] G. Nagendra, G. Covic, and J. Boys, “Detection of EVs on IPT highways,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 584–597, Sep. 2014. [34] P. Athalye, D. Maksimovic and R. Erickson, “High-performance front-end converter for avionics applications,” IEEE Trans. Aerospace and Electron. Syst., vol. 39, no. 2, pp. 462-470, Apr. 2003. [35] T. Bieler, M. Perrottet, V. Nguyen and Y. Perriard, “Wireless power and data transmission,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 1266–1272, Sep. 2002. [36] J. Wu, C. Zhao, Z. Lin, J. Du, Y. Hu and X. He, “Wireless power and data transfer via a common inductive link using frequency division multiplexing,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7810–7820, Dec. 2015. [37] Y. Sun, P. X. Yan, Z. H. Wang and Y. Y. Luan, “The parallel transmission of power and data with the shared channel for an inductive power transfer system”, IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5495-5502, Aug. 2016. [38] S. Wang, K. Izaki, I. Hirota, H. Yamashita, H. Omori and M. Nakaoka, “Induction-heated cooking appliance using new quasi-resonant ZVS-PWM inverter with power factor correction,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 705–712, Jul./Aug. 1998. [39] F. Sanz, C. Sagues and S. Llorente, “Induction heating appliance with a mobile double-coil inductor,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 1945-1952, Jun. 2015. [40] S. J. Huang, T. S. Lee and T. H. Huang, “Inductive power transfer systems for PT-based ozone-driven circuit with flexible capacity operation and frequency-tracking mechanism,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6691–6699, Dec. 2014. [41] Z. H. Wang, Y. P. Li, Y. Sun, C. S. Tang, X. Lv, “Load detection model of voltage-fed inductive power transfer system,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5233-5243, Nov. 2013. [42] J. Dai and D. C. Ludois, “A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6017-6029, Nov 2015. [43] H. H. Wu, G. Aaron, S. Ky, I. Paul, M. Jeff, “A review on inductive charging for electric vehicles,” IEEE International Electric Machines & Drives Conference, 2011. [44] N. Tesla, Experiments With Alternate Currents of Very High Frequency and Their Application to Methods of Artificial Illumination. Radford, VA, USA: Wilder, 2008. [45] T. C. Martin and N. Tesla, The Inventions, Researches and Writings of Nikola Tesla, With Special Reference to His Work in Polyphase Currents and High Potential Lighting. New York, NY, USA: The Electrical Engineer, 1894. [46] P. Soboll, V. Wienstroer and R. Kronberger, “Innovating RFID for future applications,” IEEE Microwave Mag.,” vol. 17, no. 2, pp. 65–69, Feb. 2016. [47] M. Zargham and P. G. Gulak “Maximum Achievable Efficiency in Near-Field Coupled Power-Transfer Systems,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 228–245, Jun. 2012. [48] A. Serteyn, M. Meftah and J. W. M. Bergmans, “Motion Artifacts in Capacitive ECG Measurements: Reducing the Combined Effect of DC Voltages and Capacitance Changes Using an Injection Signal,” IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 264–273, Jan. 2015. [49] J. Park, H. Garudadri and P. P. Mercier, “Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems,” IEEE Trans. Biomed. Eng., vol. 64, no. 2, pp. 452–462, Fab. 2017. [50] T. Ye, N. Y. Dai, C. S. Lam, M. C. Wong and J. M. Guerrero, “Analysis, Design and Implementation of a Quasi-Proportional-Resonant Controller for a Multifunctional Capacitive-Coupling Grid-Connected Inverter,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4269–4280, Sep. 2016. [51] E. C. Tan, A. Wahab and K. M. Low, “Application of Capacitive Coupling to the Design of an Absolute-Coordinate Pointing Device,” IEEE Trans. Instrum. Meas., vol. 54, no. 5, pp. 2099-2104, Oct. 2005. [52] Z. Zhang and X. Liao, “An Inline RF Power Sensor Based on Fixed Capacitive Coupling for GaAs MMIC Applications,”IEEE Sensors J, vol. 15, no. 2, Feb. 2015. [53] C. N. Liu, W. H. Hsieh, Y. C. Tsai, Y. C. Hsu, C. H. and W. H. Cheng, “An Oriented-Dependence-Microlens Visual Alignment and Packaging for Lasers Coupling to PMFs”, IEEE Photonics Technology Letters, vol. 28, no. 14, pp. 1569-1572. Jul. 2016. [54] G. A. Landis, “Applications for space power by laser transmission,” in Proceedings of SPIE, 1994, vol. 2121, pp. 252-255. [55] L. A. Coldren, S. W. Corzine, M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, Hoboken, USA: Wiley, 2012. [56] M. Weksler and J. Shwartz, “Solar-pumped solid-state lasers,” IEEE Journal of Quantum Electron., vol. 24, no. 6, pp.1222-1228, Jun. 1988. [57] R. M. Dickinson, “Wireless power transmission technology state of the art the first Bill Brown lecture.” Acta Astronautica, vol. 53, no. 4, pp. 561-570, 2003. [58] S. Sasaki, K. Tanaka, and Advanced Mission Research Group, ‘‘Wireless power transmission technologies for solar power satellite,’’ in Proc. IEEE MTT-S Int. Microw. Workshop Ser. Innovat. Wireless Power Transm., Technol. Syst. Appl., 2011, pp. 3–6. [59] T. A. Wheatley, “Practical implications of the new Australian and New Zealand laser safety standard.” 2014 Military Communications and Information Systems Conference (MilCIS). [60] M. M. Radmanesh, Advanced RF & Microwave Circuit Design: The Ultimate Guide to Superior Design, authorHOUSE. [61] E. J. Nalos, W. W. Lund, O. Denman, S. M, Rathjen, “Microwave Power Beaming for Long Range Energy Transfer,” 1978 8th European Microwave Conference. [62] G. Marconi, “Radio Telegraphy,” a joint meeting of the New York Section of theA. I. E. E. and The Institute of Radio Engineers, New York, Jun. 1922. [63] W. C. Brown, “The History of Power Transmission by Radio Waves,” IEEE Trans. Microwave Theory Tech., vol. 32, no.9, pp. 1230-1242, Sep. 1984. [64] D. R. Denison, T. S. Chu, M. A. Shapiro and R. J. Temkin, “Gyrotron Internal Mode Converter Reflector Shaping from Measured Field Intensity,”IEEE Trans. Plasma Science, vol. 27, no. 2, pp. 512-519, Apr. 1999. [65] W. C. Brown and E. E. Eves, “Beamed microwave power transmission and its application to space,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 6, pp. 1239-1250, Jun. 1992. [66] M. A. Stuchly, “Health effects of exposure to electromagnetic fields,” in 1995 IEEE Aerospace Applications Conference, 1995, pp. 351-368. [67] L. L. Villa, J. Sallan, J. F. S. Osorio and A. Llombart, “High-Misalignment Tolerant Compensation Topology For ICPT Systems,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945–951, Jan. 20120. [68] M. L. G. Kissin, C. Y. Huang, G. A. Covic and J. T. Boys,“Detection of the Tuned Point of a Fixed-Frequency LCL Resonant Power Supply,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1140-1143, Apr 2009. [69] B. Sharp and H. Wu,“Asymmetrical Voltage-Cancellation Control for LCL Resonant Converters in Inductive Power Transfer Systems,” 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012 [70] H. Hao, G. A. Covic and J. T. Boys,“An Approximate Dynamic Model of LCL-T-Based Inductive Power Transfer Power Supplies,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5554-5567, Oct 2014. [71] C. Liu, S. Ge, Y. Guo, H. Li and G. Gai,“Double-LCL resonant compensation network for electric vehicles wireless power transfer: experimental study and analysis,” IET Power Electron., vol. 9, no. 11, pp. 2262–2270, May. 2016. [72] H. H. Wu, A. Gilchrist, K. D. Sealy and D. Bronson, “High Efficiency 5 kW Inductive Charger for EVs Using Dual Side Control,” IEEE Trans. Ind. Informatics, vol. 8, no. 3, pp. 585–595, Aug. 2012. [73] M. Chigira, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda and A. Suzuki,“Small-Size Light-Weight Transformer with New Core Structure for Contactless Electric Vehicle Power Transfer System,” in Proc. IEEE Energy Conv. Congr. Expo., Phoenix, AZ, USA, Sep. 17–22, 2011, pp. 260–266. [74] C. Y. Huang, J. T. Boys and G. A. Covic,“LCL Pickup Circulating Current Controller for Inductive Power Transfer Systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081-2093, Apr. 2013. [75] C. S. Wang, G. A. Covic and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer system,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148–157, Feb. 2004. [76] M. Budhia, G. A. Covic and J. T. Boys, “Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, Nov. 2011. [77] W. D. Stanley and J. M Jeffords, Electronic Communications: Principles and Systems. Delmar Cengage Learning, 2005.
摘要: 一般的電動車充電器使用有線方式(plug-in)充電。 本文提出無線充電方法不需連接線。它是利用電磁感應將能量由來源端(一次側)送到負載端(二次側)。由於充電器的一次側及二次側是電氣隔離,沒有接線,所以這個無線充電器被開發俱有無線通訊功能。 當充電的同時,二次側的充電電壓電流、車牌號碼或緊急訊息可以回傳給充電器。這些訊息傳遞不需使用RF通訊裝置,而是利用新穎的資料貼合技術隨載波傳送。這個能量及訊息傳遞工作使用相同的操作頻率、電路,及電磁感應裝置去實現。 二次側回傳資料是利用順時調控負載電流,同時一次側接收資料依ZVS原理。一次側傳送命令利用修剪輸出電流,及二次側接收命令依二次側電流週期時間。 這個系統可以去監視二次側的操作狀態及依電池狀態調整充電電流。當二次側發生緊急狀況像是過電壓或過電流, 這個系統立即停止充電。這將有助於提昇充電時的安全性。資料在一次側及二次側之間流動是透過互感,所以通訊俱有保密性。資料不會發散在空氣中,所以通訊不會對周遭通訊設備產生干擾(interference)。 本文提出的方法經實驗証明充電效率最高可達86%,充電的同時通訊品質最高可達98%,不必增加射頻通訊設備。
The battery charging in traditional electric vehicles is the need to plug in charging devices. Therefore, this thesis proposes a wireless battery charging method, which utilize electromagnetic induction to transfer power from grid (primary side) to vehicle (secondary side). Owing to two side are isolated the charger develop wireless communication for convenience. The data related to the battery status, the vehicle ID code, or emergency messages to be simultaneously transferred between the grid and vehicle. The communication task use a novel, convenient, and low-cost data technology attachment instead of traditional RF equipment. The power and data transfer were implemented by the same operation frequency, circuit, electromagnetic induction equipment. The secondary unit transfers data by adjusting current of load, and the primary unit receives data based on the zero-voltage switching (ZVS) method. The primary unit transfers command by trimming the current’s curve and the secondary unit receives command and make decoding using the period of carrier wave Furthermore, the proposed mechanism is capable of stopping immediately, in the case of contingencies such as overcharge voltage or current. Operation is a benefit for both efficiency and safety during the charging process. The bidirectional data transfer via mutual between two sides, and data are not broadcast in air. The system communication supports safety and no interference. Our design has been well verified via a variety of real-world tests which result max. 86% for efficiency, max, 98% for communication quality, and no use RF equipment.
URI: http://hdl.handle.net/11455/97032
文章公開時間: 2020-07-07
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.