Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97047
標題: 使用改良型局部二值模式之手掌靜脈辨識系統
Palm Vein Recognition System with Modified LBP
作者: 王涵
Han Wang
關鍵字: 生物辨識
靜脈辨識
biometric characteristics
palm vein recognition
引用: [1]掌靜脈辨識應用從門禁延伸到CRM http://www.ithome.com.tw/node/43477 [2]生物辨識技術的安全問題與應用發展 https://www.asmag.com.tw/print_article.aspx?id=10340 [3]T. Ojala, M. Pietikainen and D. Harwood, 'Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,' in Proc. of 12th International Conference on Pattern Recognition, Jerusalem, 1994, pp. 582-585 vol.1. [4]T. Ojala, M. Pietikäinen, and D. Harwood, 'A comparative study of texture measures with classification based on feature distributions,' Pattern Recognition, vol. 29, pp. 51-59, 1996. [5]B. Zhang, Y. Gao, S. Zhao, and J. Liu, 'Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor,' IEEE Transactions on Image Processing, vol. 19, no. 2, pp. 533-544, Feb. 2010. [6]L. Zhang, R. Chu, S. Xiang, and S. Z. Li, “Face detection based on Multi-Block LBP representation,” in Proc. of the International Conference on Biometrics, pp. 11–18, 2007. [7]X. Tan and B. Triggs, 'Enhanced local texture feature sets for face recognition under difficult lighting conditions,' IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1635-1650, June 2010. [8]T. Jabid, M. H. Kabir, and O. Chae, 'Gender classification using local directional pattern (LDP),' in Proc. of 20th International Conference on Pattern Recognition, Istanbul, 2010, pp. 2162-2165. [9]T. Ahonen, A. Hadid, and M. Pietikainen, 'Face description with local binary patterns: application to face recognition,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037-2041, Dec. 2006. [10]E. C. Lee, H. C. Lee, and K. R. Park, “Finger vein recognition using minutebased alignment and local binary pattern-based feature extraction,” Int. J. Imaging Syst., and Technol., vol. 19, no.3, pp. 179–186, 2009. [11]Y. Wang, K. Li, and J. Cui, 'Hand-dorsa vein recognition based on partition Local Binary Pattern,' in Proc. of IEEE 10th International Conference on Signal Processing, Beijing, 2010, pp. 1671-1674. [12]Y. Wang, K. Li, J. Cui, L.-K. Shark, and M. Varley, 'Study of hand-dorsa vein recognition,' Advanced Intelligent Computing Theories and Applications, 2010 (LNCS), pp. 490–498 [13]G. K. O. Michael, T. Connie, and A. B. J. Teoh, 'Touch-less palm print biometrics: Novel design and implementation,' Image and Vision Computing, vol. 26, no.12, pp.1551 – 1560, 2008. [14]T. Ojala, M. Pietikäinen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002. [15]E. C. Lee, H. Jung, and D. Kim, 'New finger biometric method using near infrared imaging,' Sensors, vol. 11, no.3, pp. 2319–2333, 2011. [16]L. Mirmohamadsadeghi and A. Drygajlo, 'Palm vein recognition with local texture patterns,' IET Biometrics, vol. 3, no. 4, pp. 198-206, 2014. [17]R. Punidha and B. Latha, 'Illumination invariant face recognition system using local directional pattern and principal component analysis,' International Journal of Computer Applications Technology and Research, vol. 3, no. 12, pp.769 - 773, 2014. [18]G. Zhao, T. Ahonen, J. Matas, and M. Pietikainen, 'Rotation-invariant image and video description with local binary pattern features,' IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 1465-1477, Apr. 2012. [19]中國科學院自動化研究所http://www.ia.cas.cn/ [20]中國科學院自動化研究所CASIA Multi-Spectral Palmprint Database http://biometrics.idealtest.org/dbDetailForUser.do?id=6 [21]N. Otsu, 'A threshold selection method from gray-level histograms,' IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979. [22]R. C. Gonzalez, R. E. Woods, and S. L. Eddins, 'Morphological image processing,' Digital Image Processing, vol. 3, pp.627-688, 2008. [23]數學形態學 https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%BD%A2%E6%80%81%E5%AD%A6 [24]Sobel operator https://en.wikipedia.org/wiki/Sobel_operator [25]Geometric transformation https://en.wikipedia.org/wiki/Geometric_transformation [26]The Rubber-Sheeting transformation http://www.corrmap.com/features/rubber-sheeting_transformation.php [27]R. C. Gonzalez and R. E. Woods, Digital Image Processing. 3rd Edition. Prentice Hall, New York, 2007. [28]S. M. Pizer, et al., 'Adaptive histogram equalization and its variations,' Computer Vision, Graphics, and Image Processing, vol. 39, no.3, pp.355-368, 1987. [29]K. Zuiderveld, “Contrast limited adaptive histogram equalization,” Graphics Germs Ⅳ, Academic Press,1994. [30]限制對比度自適應直方圖均衡化算法原理,實現及效果 http://www.cnblogs.com/Imageshop/archive/2013/04/07/3006334.html [31]M. I. J. Swain and D. H. Ballard, “Color indexing,” Int. J. Comput. Vis., vol.7, pp. 11–32, 1991. [32]K. Grauman and T. Darrell, 'The pyramid match kernel: discriminative classification with sets of image features,' in Proc. of Tenth IEEE International Conference on Computer Vision, Beijing, 2005, pp. 1458-1465. [33]Histogram intersection(直方圖交叉核,Pyramid Match Kernel) http://blog.csdn.net/smartempire/article/details/23168945 [34]維基百科 Linux https://zh.wikipedia.org/wiki/Linux [35]維基百科 VMware https://zh.wikipedia.org/wiki/VMware [36]【介紹】What is Qt? http://program-lover.blogspot.tw/2008/08/qt_21.html [37]Zedboard 評測 http://www.eeboard.com/evaluation/zedboard-%E8%AF%84%E6%B5%8B%EF%BC%88%E4%B8%80%EF%BC%89-demo%E6%BC%94%E7%A4%BA/ [38]ZedBoard-圖形化介面linux(linaro)安裝總結 https://read01.com/64eA8y.html
摘要: 科技日新月異,無論是公司大樓門禁或是出入境管理,皆須身分認證,以保障安全。應用領域的身分認證方法及技術很多,其中以能表示個人獨特的生物辨識特徵樣本最具方便及安全性。但各種生物辨識技術,除了設備本身的成本不同外,在生物特徵樣本採集的便捷性、取樣品質等因素皆有不同影響,因此影響辨識的準確度,如何正確取得生物辨識特徵便成為重要的議題。 本研究提出了手掌靜脈辨識的方法,使用改良型LBP,透過擷取手掌靜脈的紋理特徵去進行相似度比較,最後再計算出準確度,準確度最高可達99.83%。
With the advance of science and technology, whether it is the company building access control or immigration management, both of them need identity authentication to ensure safety. There are many kinds of identity authentication methods and techniques in various applications. Among all techniques, the unique biometric characteristics of individuals is the most convenient and safe technique to represent oneself. However, in addition to different costs of the equipment, the convenience of the biometric sample collection, or sampling quality, and so forth, also have different effects on authentication, and thus affecting the accuracy of identification. Therefore, how to obtain the biometric characteristics has become a significant issue. In this thesis, the method of palm vein recognition was proposed. The modified Local Binary Pattern (LBP) is used to obtain the similarity of the palm vein, and the accuracy is finally calculated. The accuracy can reach 99.83%.
URI: http://hdl.handle.net/11455/97047
文章公開時間: 2020-08-25
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.