Please use this identifier to cite or link to this item:
標題: 使用最大功率點追蹤及零電流切換控制的低壓啟動升壓轉換器
Low-voltage start-up boost converter with zero current switching control and MPPT
作者: 鄭豐議
Feng-Yi Jeng
關鍵字: 升壓器
boost converter
energy harvesting
引用: [1] S. Siouane, S. Jovanovi´c, and P. Poure, “Equivalent electrical circuit of thermoelectric generators under constant heat flow,” in Proc. IEEE International Environment and Electrical Engineering Conference, 2016. [2] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, Sept. 2012. [3] S. Carreon-Bautista, A. Eladawy, A. N. Mohieldin, and E. Sánchez-Sinencio, “Boost converter with dynamic input impedance matching for energy harvesting with multi-array thermoelectric generators,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5345-5353, Oct. 2014. [4] M. Aamir and M. Y. Shinwari, “Design. implementation and experimental analysis of two-stage boost converter for grid connected photovoltaic system,” in Proc. IEEE International Computer Science and Information Technology Conference, 2010. [5] P. Chen, K. Ishida, X. Zhang, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “0.18-V input charge pump with forward body biasing in startup circuit using 65nm CMOS,” in Proc. Custom Integrated Circuits Conference, 2010. [6] C. Veri, M. Pasca, and S. D''Amico, “A 40mV start up voltage DC - DC converter for thermoelectric energy harvesting applications,” in Proc. Ph.D. Research in Microelectronics and Electronics Conference, 2014. [7] P. Weng, H. Tang, P. Ku, and L. Lu, “50 mV-Input batteryless boost converter for thermal energy harvesting,” IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 1031-1041, Apr. 2013. [8] J. Kim and C. Kim, “A DC–DC boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications,” IEEE Transactions on Power Electronics, vol. 28, no. 8, pp. 3827-3833, Dec. 2012. [9] C. Huang, W. Chen, C. Ni, K. Chen, C. Lu, Y. Chu, and M. Kuo, “Thermoelectric energy harvesting with 1mV low input voltage and 390nA quiescent current for 99.6% maximum power point tracking”, in Proc. ESSCIRC , 2012. [10] A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff, and B. H. Calhoun, “A 10 mV-Input boost converter with inductor peak current control and zero detection for thermoelectric and solar energy harvesting with 220 mV cold-start and 14.5 dBm, 915 MHz RF kick-start,” IEEE Journal of Solid-State Circuits, vol. 50, no. 8, pp. 1820-1832, Aug. 2015. [11] T. Ozaki, T. Hirose, H. Asano, N. Kuroki, and M. Numa, “Fully-integrated high-conversion-ratio dual-output voltage boost converter with MPPT for low-voltage energy harvesting,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2398-2407, Oct. 2016. [12] P. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and Vth-tuned oscillator with fixed charge programming,” IEEE Journal of Solid-State Circuits, vol. 47, no. 5, pp. 1252-1260, May 2012. [13] J. Goeppert and Y. Manoli, ” Fully integrated startup at 70 mV of boost converters for thermoelectric energy harvesting,” IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1716-1726, Jul. 2016. [14] M. Ashraf and N. Masoumi, “A thermal energy harvesting power supply with an internal startup circuit for pacemakers,” IEEE Transactions on Very Large Scale Integration Systems, vol. 24, no. 1, pp. 26-37, Jan. 2016. [15] J. Im, S. Wang, S. Ryu, and G. Cho, “A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting,” IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 3055-3067, Dec. 2012. [16] T. Ogawa, T. Ueno, T. Miyazaki, and T. Itakura, “20 mV input, 4.2 V output boost converter with methodology of maximum output power for thermoelectric energy harvesting,” in Proc. Applied Power Electronics Conference and Exposition, 2016. [17] A. Tyagi, C. Gopi, P. Baldi, and A. Islam, “CNFET-based 0.1- to 1.2-V DC/DC boost converter with voltage regulation for energy harvesting applications,” IEEE Transactions on Nanotechnology, vol. 14, no. 4, pp. 660-667, Jul. 2015.
摘要: 本論文提出了一個無須外加電源並且適用於能量收集技術熱電產生器的低壓啟動直流對直流二階段切換升壓轉換器。由於熱電產生器的輸出電壓小於一般電路的工作電壓,使電源管理電路無法直接使用,因此需要另外的啟動電路做為輔助。本論文使用了一個可關閉的低壓啟動電路,在一開始的第一階段能夠使低輸入電壓先提高至一定大小後,做為啟動階段的工作電壓,之後再透過啟動用升壓器使輸出電壓達到可以讓一般電路運作的大小0.6V。 在輸出電壓達到目標電壓0.6V後,低壓啟動電路將會完全關閉並且進入第二階段,零電流切換控制電路開始運作使主要升壓器操作在非連續導通模式,更進一步地提高輸出電壓後達成穩定輸出且高效率的運作。本電路採用TSMC 0.18µm製程,整體的最低啟動電壓為0.2V,而最低的輸入電壓為0.1V,效率最高可達82.5%。 為了進一步增加升壓器的輸出功率,同時也為了考慮熱電產生器在運作時的輸出電壓變化對升壓器電路的影響,本論文也嘗試了將原本的二階段升壓器加入了最大功率點追蹤功能並跟原本的結果進行比較。加入最大功率點追蹤後整體電路的最低輸入電壓增加至0.2V,效率的最大值也下降至57%,但確實提高了升壓器的輸出功率大小。
This thesis presents a fully electrical self-start-up dc–dc boost converter designed for thermoelectric generator (TEG) for energy harvesting applications. Because the output voltage of TEG is smaller than the supply voltage required by most of the circuits, power management circuit cannot be used directly. Therefore, a circuit for low voltage start-up is necessary. In the first stage of operation, the start-up circuit can produce a supply voltage for the start-up boost converter, which increases the output voltage from zero to 0.6V. After the output voltage reaches the target of 0.6V, the start-up circuit will be completely shut down and the second stage of operation begins. The zero current switching (ZCS) control circuit starts producing the control signal to make primary boost converter operate in discontinuous conduction mode. Finally, a higher and stable output voltage can be obtained efficiently. The converter was designed by using TSMC 0.18 µm CMOS process, which can achieve a peak efficiency of 82.5%. The lowest start-up voltage is 0.2V and the lowest input voltage is 0.1V. Not only to increase the output power but also considering the variation of TEG’s output voltage, this thesis attempts to add maximum power point tracking (MPPT) technique into previous converter architecture. The modified version with MPPT does have a higher output power, however, the peak efficiency is lower at 57% and the lowest input voltage increases to 0.2V.
文章公開時間: 2019-10-24
Appears in Collections:電機工程學系所



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.