Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97185
標題: 應用DEFORM軟體於雙重厚度板材之輥軋成形研究
Study on Rolling of a Double Thickness of the Sheet by DEFORM
作者: 林哲毅
Che-Yi Lin
關鍵字: 輥軋
對稱式輥軋
非對稱式輥軋
金屬型材
DEFORM
Rolling
Symmetric rolling
Asymmetric rolling
Metal profile sheet
DEFORM
引用: [Ab11] Abdelkhalek, S., Montmitonnet, P., Legrand, N., Buessler, P., 2011, “Coupled approach for flatness prediction in cold rolling of thin strip,” International Journal of Mechanical Sciences, 53, p. 661-675. [Al16] Alexa, V., Ratiu, S., Kiss, I., 2016, “Metal rolling – Asymmetrical rolling process,” IOP Conference Series: Materials Science and Engineering, 106, 012019. [Ao14] 敖仲寧,連凱泓,彭葳濟,葉彥良,2014,『鋼胚粗軋上下 軋輥非對稱摩擦條件對胚型之影響』,SIMULIA Regional User Meeting,新北市。 [Ch03] 陳狄成,2003,『應用有限元素法於缺陷板材壓延加工之解 析』,國立中山大學碩士論文。 [Ch06] Chen, D.-C., Chen, C.-F., 2006, “Use of Taguchi method to develop a robust design for the shape rolling of porous sectioned sheet,” Journal of Materials Processing Technology, 177, p. 104-108. [Ch08] 長瀨 直樹,志渡 誠一,鑓田 征雄,2008,『調質圧延時ソ ①みю表面粗イ摩耗ズ対エペ調質圧延油剤ソ?果』,鉄シ 鋼`,94卷,頁415-421。 [Ch09] 鄭志忠,2009,『異入射角度之非對稱壓延對A1050板材曲 率變化之實驗研究』,國立中央大學碩士論文。 [Gu74] 關昌揚,1974,金屬輥軋學,台北市:徐氏基金會出版。 [Ha06] Halmos, G. T., 2006, Roll Forming Handbook, Boca Raton: CRC Press. [Hi12] Hirt, G., Dávalos‐Julca, D. H., 2012, “Tailored profiles made of tailor rolled strips by roll forming–part 1 of 2,” Steel Research International, 83, p.100-105. [Hi14] Hirt, G., Senge, S., 2014, “Selected processes and modeling techniques for rolled products,” Procedia Engineering, 81, p.18- 27. [Hu99] 黃新春,陳昌順,王進猷,1999,塑性加工學,台北市:文 京圖書有限公司。 [Hw14] Hwang, Y.-M., Hwang, T.-F., Lin, C.-Y., Su, C.-W., 2014, “An innovative development of a four-high foil rolling mill,” International Journal of Advanced Manufacturing Technology, 71, p. 557-563. [Ko03] Kopp, R., Böhlke, P., 2003, “A New Rolling Process for Strips with a Defined Cross Section,” CIRP Annals - Manufacturing Technology, 52, p. 197-200. [La63] Larke, E. C., 1963, The Rolling of Strip, Sheet and Plate, London:Chapman & Hall. [Li09] Lindgren, M., Bexell, U., Wikström, L., 2009, “Roll Forming of Partially Heated Cold Rolled TRIP Steel,” Journal of Materials Processing Technology, 209, p. 3117-3124. [Li14] Linghu, K., Jiang, Z., Zhao, J., Li, F., Wei, D., Xu, J., Zhang, X., Zhao, X., 2014, “3D FEM analysis of strip shape during multi-pass rolling in a 6-high CVC cold rolling mill,” The International Journal of Advanced Manufacturing Technology, 74, p. 1733-1745. [Pa02] Pawelski, H., 2002, “Friction inhomogeneities in cold rolling,” Journal of Materials Processing Technology, 125-126, p. 392-397. [Pa11] Paralikas, J., Salonitits, K., Chryssolouris, G., 2011, “Investigation of the Effect of Roll Forming Pass Design on Main Redundant Deformations on Profiles form AHSS,” International Journal of Advanced Manufacturing Technologies, 56, p. 475-491. [Pe14] Pesin, A., Pustovoytov, D., 2014, “Finite element modeling of edge defect formation in plate rolling,” Procedia Engineering, 81, p. 132-136. [Re13] Reggiani, B., Segatori, A., Donati, L., Tomesani, L., 2013, “Prediction of charge welds in hollow profiles extrusion by FEM simulations and experimental validation,” International Journal of Advanced Manufacturing Technology, 69, p. 1855- 1872. [Su12] 蘇建文,2012,『應用四重式壓延機於異形材壓延之研究』, 國立中山大學碩士論文。 [Un52] Underwood, L. R., 1952, The Rolling of Metals, United States: Springer. [Ut99] Utsunomiya, H., Saito, Y., Matsueda, S., 1999, “Proposal of a new method for the spread rolling of thin strips,” Journal of Materials Processing Technology, 87, p. 207-212. [Wa09] Wang, J., Xu, Z., Xin, L., Li, F., 2009, “Preprocessing to weld line based on roller forming for tailored blank laser welding system,” International Conference on Automation and Logistics, Shenyang China. [Wi01] Wisselink, H. H., Huetink, J., Dijk, M. H. H., van Leeuwen, A. J., 2001, “3D FEM Simulations of a shape rolling process,” Fourth ESAFORM Conference on Material Forming, Liège Belgium. [Wi02] Wisselink, H. H., Huetink, J., 2002, “Tool deformation during the shape rolling of stator vanes,” Fifth ESAFORM Conference on Material Forming, Krakow Poland. [Wu52] Wusatowski, Z., 1952, Fundamentals of Rolling, Katowice: Śląsk. [Xu96] Xu, Q., Hartley, P., Pillinger, I., 1996, “Finite element investigation of curvature in the roll platen forming process,” Journal of Materials Processing Tedanology, 60, p. 103-108. [Ya00] 顏瑞泰,2000,『非對稱壓延加工問題之有限元素法分析』, 國立中央大學碩士論文。 [Zh08] 張志毅,2008,應用三維有限元素法於厚板輥軋之寬展率分 析,南亞學報第二十八期,桃園市。
摘要: 本研究嘗試以一道次輥軋製程製備雙重厚度板材,相較多道次輥軋成形能減少生產成本,且藉有限元素軟體DEFORM分析,就簡單外型之金屬型材,探討外型參數、製程參數對輥軋成形之影響。建立外型參數為減薄寬度、減薄距離;製程參數為對稱式輥軋下相異速度比、輥徑,非對稱式輥軋下相異輥徑比、二輥軸距離。外型參數分析結果得知,減薄寬度與減薄距離設定大小,影響輥軋成形時板材於輥軋方向之速度分布,速度差異過大時將使板材橫向截面呈波浪狀。由製程參數分析結果得知,對稱式輥徑設定下,輥徑大小影響板材成行之厚度尺寸,及板材進入模具之波振幅與離開模具之彎曲特性,而速度比差異能使速度慢之模具成特定扭矩關係;非對稱式輥軋設定下,二輥軸距大小影響成形後之厚度尺寸及板材離開模具之彎曲特性,輥徑比大小影響模具徑向負荷與扭矩負荷,而板材進入模具之波振幅於非對稱輥軋設定則大幅減緩。本研究就簡單外型金屬型材設定下,製程設定以非對稱式輥徑為佳,於成形特徵、模具負荷及成形特性比較下,為次之或最佳之選項,可供一道次輥軋成形具不同厚度板材之應用參考。
This study tries to produce a double thickness of the sheet by the one-pass rolling process. Compared to multi pass rolling, this method can reduce the production cost. The finite element software, DEFORM, can analyze the simple profile metal to understand how appearance parameters and process parameters impact the roll forming. The appearance parameters are the width of thickness reduction and the distance of thickness reduction; the process parameters are the varying speed ratio under the symmetrical roll, the roll diameter, the varying roll diameter ratio under the asymmetric roll, and the roll gap. The results of the process parameters analysis show that the setting of the width of thickness reduction and the distance of thickness reduction will impact the velocity distribution in the rolling direction during the roll forming process. The huge difference in velocity will contribute to the wavy transverse cross-section of the plate. From the analysis of the process parameters under the setting of symmetrical roll, the size of the roller would affect the thickness of the plate as well as the wave amplitude which caused when the plate gets into the mold, and the bending characters when the plate leaves the mold. The speed difference can make a slow speed mold a specific torque. Under the setting of asymmetric rolling, the distance between two rollers would affect the thickness of the finished plate and the bending characters when the plate leaves the mold. The size ratio of the roller would affect the mold’s radial load and torque load. The wave amplitude formed when the plate gets into the mold would be significantly reduced under the setting of asymmetric roller diameter. This study concludes that under the setting of simple profile metal, the asymmetric rolling is the best process setting. Comparing to the formation characteristics, the mold load, and the formation nature, it would be the second or the best choice. This study can provide a reference of application for making the different thickness of one-pass rolling.
URI: http://hdl.handle.net/11455/97185
文章公開時間: 2020-08-30
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.