Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97285
標題: 多頻生物電阻抗相位角對身體體脂率評估的探討
Assessment of body fat percentage by using Multi-frequency bioelectrical impedance phase angle analysis
作者: 陳淑滿
Shu- Man Chen
關鍵字: 體脂率
生物阻抗分析法(BIA)
生物阻抗相位角PhA
body fat percentage
bioimpedance analysis (BIA)
bioimpedance phase angle(PhA)
引用: 1. Thomas Lehnert, MSc ResearchAssociate, Diana Sonntag, et al. Economic costs of overweight and obesity. Best Practice & Research Clinical Endocrinology & Metabolism 27 (2013) 105-115. 2. Ursula G. Kyle, Ingvar Bosaeus, Antonio D.De Lorenzo, et al. Bioelectrical impedance analysis-part1: review of principles and methods.Clinical Nutrition 23 (2004),1226-1243. 3. Antonio Piccoli, MD, DSc, Luana Pillon, MD,BSc, and Francis Dumler,MD. Impedance Vector Distribution by Sex, Race, Body Mass Index, and Age in the United States: Standard Reference Intervals as Bivariate Z Scores. Nutrition Volume 18 (2002), Number 2. 4 .Maria Cristina G Barbosa-Silva, Aluísio JD Barros, Jack Wang, et al. Bioelectrical impedance analysis: population reference values for phae angle by age and sex.Am J Clin Nutr 82(2005),49-52. 5.Richard N Baumgartner, PhD; W Cameron Chumlea, PhD; and Alex F Roche, MD, PhD. Bioelectric impedance phase angle and body composition. Am J Clin Nutr 48 (1988),16-23. 6.Nicole Stobäus, Matthias Pirlich, Luzia Valentini, et al. Determinants of bioelectrical phase angle in disease.Britisb Journal of Nutrition 107(2012),1217- 1220. 7.Patel RV, Peterson EL, Silverman N, Zarowitz BJ. Estimation of total body and extracellular water in post-coronary artery bypass surgical patients using single and multiple frequency bioimpedance. Crit Care Med 24 (1996),1824-8. 8. 鍾承穎、洪啟智、黃尚志、陳鴻鈞(2012)。生物阻抗分析於內科學之應用 【專題】。內科學誌,23,245-253。 9. Selberg o& Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol 86 (2002), 509-516. 10. Nazeen Ishrat Siddiqui, Sarfaraz Alam Khan, Mohammad Shoeb, et al. Anthropometric Predictors of Bio-Impedance Analysis (BIA) Phase Angle in Healthy Adults. Journal of Clinical and Diagnostic Research. 2016 Jun, Vol- 10(6):CC01-CC04. 11.Piccoli A, Rossi B, Pillon L, Nucciante G. A new method for monitoring body fluid variation by Bioimpedance analysis: the RXc graph. Kidney Int 46 (1994), 534-539. 12. Lee RD and Nieman DC: Nutrition assessment 「Chart six」p223-286, second edition. The McGraw-Hill Companies, Inc. 1995. 13. Wang ZM, Pierson RN Jr, Heymsfield SB The fivelevel model: a new approach to organizing body composition research. Am J Clin Nutr,56(1)(1992),19-28. 14. Wang ZM, Heymsfild SB History of the study of human body composition: a brief Review. Am J Hum Biol, 1999,11:157. 15. Whittaker, E. T., A history of the theories of aether and electricity. . Nelson, London, 1 (1951). 16.Lukaski HC, johnson PE, Bolonchuk WW, et al. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Amercian Journal of Clinical Nutrition, 41 (1985), 810-817. 17.Dittmar M. Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. Am J Phys Anthropol ; 122 (2003) ,361-370. 18. Kyle UG, Genton L, Slosman DO, et al. Fat-Free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition 17(2001),534-541. 19. Bosy-Westphal A, Danielzik S, Dorhofer RP, et al. Phase angle from bioelectrical phase angle: population reference values by age, sex, and body mass index. JPEN J Parenter Enteral Nutr 30 (2006), 309-316. 20.Janssen I, Heymsfield SB,Baumgartner RN, Ross R. J. Estimation of skeletal muscle mass by bioelectrical impedance analysis. Appl Physiol. 89 (2000): 465-471. 21. Tengvall M, Ellegard L, Malmros V, Bosaeus N, Lissner L, Bosaeus I. Body composition in the elderly: Reference values and bioelectrical impedance spectroscopy to predict total body skeletal muscle mass. Clin Nutr. 28 (2009) : 52-58. 22. Keyle UG, Genton L, Hans D, Pichard C. Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass(ASMM). Clin Nutr. 23.Nazeen Ishrat Siddiqui, Sarfaraz Alam Khan, Mohammad Shoeb, et al. Anthropometric Predictors of Bio-Impedance Analysis (BIA) Phase Angle in Healthy Adults. Journal of Clinical and Diagnostic Research. 2016 Jun, Vol- 10(6):CC01-CC04. 24.Miki Nagano, Sachiyo Suita, and Takeshi Yamanouchi Fukuoka, Japan. The Validity of Bioelectrical Impedance Phase Angle for Nutritional Assessment in Children. Journal of Pediatric Surgery. Vol 35, No 7(July),2000: pp 1035-1039. 25.Josely C. Koury, Nádia M.F. Trugo, and Alexandre G. Torres. Phase Angle and Bioelectrical Impedance Vectors in Adolescent and Adult Male Athletes. International Journal of Sports Physiology and Performance, 9 (2014), 798-804. 26. 王斌會編著 (2016)。多元統計分析及R語言建模。中國廣州 : 暨南大學。 27. 陳景祥著 (2016)。R軟體 : 應用統計方法。臺北市 : 東華。
摘要: 近幾十年來,肥胖症大幅增加,成為全球重要的健康問題之一,醫療成本隨著身體質量指數的增加而上升,造成國家經濟的負擔;體脂率的監控,成為重要的議題。 測量體脂率的方法有身體質量指數(BMI)、皮脂厚度測量法(skin fold Thickness)、水中秤重法(Underwater Weighting)、生物阻抗分析法(Bio-Impedance Analysis,BIA)、雙能X光吸收儀(Dual energy X-ray absorptionmetry, DXA)測量等;其中,BIA法具有非侵入性、操作簡便和可重複的優點,其方法是對人體輸入微量不同頻率的電流,可以測量出細胞內外液體的電阻(R)和細胞膜的電抗(Xc);本研究以美國的國家健康與營養調查(National Health and Nutrition Examination Survey, NHANES)所公布的1999~2000年抽樣測量資料,運用R程式語言和統計工具中的的相關係數、線性迴歸分析、統計檢定等對於電阻R、電抗Xc、相位角PhA、BMI與 BF%的關係進行討論,其中BF%是指DXA測量的體脂率。經研究分析後得到以下結論: 一、當BMI遞增,R/H(Ω/m)、Xc/H(Ω/m) 以及向量長度Z/H的平均數皆遞減;BMI與PhA成顯著正相關(p<0.01),PhA在男性的表現上先上升後下降,而女性的PhA表現隨BMI的遞增而逐漸緩慢的遞增。男性的最大相位角表現在BMI介於25~35之間,女性的最大相位角表現在BMI≥35的時候。 二、當BF%遞增,R/H(Ω/m) 、Xc/H(Ω/m) 以及向量長度Z/H的平均數皆遞減;BF%與PhA成顯著負相關(p<0.01),PhA在男性的表現上也是先上升後下降,而女性的表現上則是先下降再上升。男性的最大相位角表現在BF﹪介於20~25﹪之間,女性的最大相位角表現在BF﹪≤20% 的時候。 三、對於BMI而言,男女性別是沒有區別的,年齡是有區別的。對於BF%而言,男女性別是有區別的,年齡是沒有區別的。 四、以年齡、性別、身高、體重、BF% 為變數對PhA進行多元迴歸,其中PhA 值和體重呈顯著正相關(p<0.01),而和年齡、性別、身高、BF﹪呈顯著負相關(p<0.01)。其中年齡和性別對PhA的解釋力最佳,也等同於身高和性別對PhA的解釋力。
During recent decades, the prevalence of obesity increased drastically, which has become one of the most significant health problems all over the world. The medical cost increases with Body Mass Index (BMI), leading to the burden of national economy. Monitoring body fat percentage has become an important issue. Methods for measuring body fat percentage include Body Mass Index (BMI), skinfold thickness, underwater weighing, bioimpedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). Among these methods, BIA has the advantages of being non-invasive, easy to operate, repeatable and highly accurate. The BIA method entails injecting small electric currents of different frequencies into the human body. we can measure the resistance (R) of intracellular and extracellular fluids and the reactance (Xc) of cell membranes. Based on the sampling measurement data published by the US National Health and Nutrition Examination Survey (NHANES) from 1999 to 2000, this study used R language and statistical tools to conduct correlation coefficient analysis, linear regression analysis and statistical tests with regards to the relationships between the values of R , Xc, PhA, BF%. and BF% . BF% is the body fat percentage measured using DXA. After study and analysis, the following conclusions were reached: 1. As BMI increased, the means of R/H(Ω/m), Xc/H(Ω/m) and the vector length Z/H all decreased. PhA showed a significant positively correlation with BMI ((p<0.01).In relation to males, PhA rised first and then down. Phase angle showed the maximum when BMI was between 25 and 35.As for females, PhA gradually decreased when BMI increased. Phase angle showed the maximum when BMI was greater than or equal to 35. 2. As BF% increased, the means of R/H(Ω/m), Xc/H(Ω/m) and vector length Z/H all decreased. PhA showed a significant negative correlation with BF%((p<0.01). In relation to males, PhA rised first and then down . Phase angle showed the maximum when BF% was between 20 and 25%.As for females, PhA down first and then rised. Phase angle showed the maximum when BF% was less than or equal to 20%. 3. When it came to BMI, there was no distinction between males and females, but there was distinction in age. When it came to BF%, there was a distinction between males and females, but there was no distinction in ageA. 4. Multiple regression is adopted to analyze PhA and there are several variables, including age, gender, height, weight and BF%. The PhA is significant positively correlated with weight (p<0.01) and significant negatively correlated with age, gender, height and BF% (p<0.01). Among all, for age and gender it achieved the best variability explained of to PhA is equal to the that of height and gender to PhA.
URI: http://hdl.handle.net/11455/97285
文章公開時間: 2018-07-03
Appears in Collections:應用數學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.