Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97534
標題: 以微量元素與氫、氧、碳、氮同位素區分大蒜地理來源
Use of chemical profiling and stable isotopes of hydrogen, carbon, oxygen and nitrogen to differentiate geographical origins of garlic
作者: 林振男
Jhen-Nan Lin
關鍵字: 同位素
微量元素
大蒜
產地鑑定
主成分分析
判別分析
Isotopes
trace elements
garlic
origin identification
principal component analysis
discriminant analysis
引用: 行政院農業委員會全球資訊網,2001,農業政策,https://www.coa.gov.tw/ws.php?id=1008&print=Y 中華民國行政院,2016,消費資(警)訊,https://www.ey.gov.tw/news_Content4.aspx?n=E7E343F6009EC241&s=6E06FA23A7DBEBD3。 行政院農業委員會農糧署,2018,臺灣、大陸蒜簡易辨識法,https://www.afa.gov.tw/cht/index.php?code=list&flag=detail&ids=306&article_id=38105。 林巧玟、顏永福,1995,大蒜栽培管理與採收後貯藏技術,台南區農業專訊,14: 11-14。 林滄澤,2000,大蒜栽培與利用,台南區農業改良場技術專刊,89-3(NO.101)。 陳永剛,2000,世紀以來的氣味-大蒜,農政與農情,97。 方怡丹,2003,大蒜產銷現階段問題及因應輔導措施,農政與農情,135。 彭宗仁、劉滄棽、林幸助,2006,穩定同位素在農業及生態環境上之應用,台灣農業研究,55(2): 79-90。 呂秀英,2006,多變數分析在農業科技之應用,作物、環境與生物資訊,3:199-216。 劉滄棽、郭鴻裕、朱戩良、連深,2007,台灣東部蛇紋岩母質化育土壤地區重金屬特性之初探,台灣農業研究,56(2): 65-78。 劉滄棽、彭宗仁、吳昇鴻、范家華、林毓雯,2009,分析植體氮同位素組成鑑別有機蔬菜之初步評估,台灣農業研究,58(3): 169-175。 林經偉、陳水心,2011,大蒜合理化施肥,豐年,61(18): 31-35。 鄭昭欣、萬乃容、闕山仲,2011,穩定同位素比值質譜儀於鑑識科學之應用與展望,科儀新知,33(4): 43-53。 Anderson, K.A. and B.W. Smith. 2002. Chemical profiling to differentiate geographic growing origins of coffee. J. Agric. Food Chem. 50: 2068-2075. Anderson, K.A. and B.W. Smith. 2005. Use of chemical profiling to differentiate geographic growing origin of raw pistachios. J. Agric. Food Chem. 53: 410-418. Ariyama, K., Y. Aoynma, A. Mochizuki, Y. Homura, M. Kadokura and A. Yasui. 2007. Determination of the geographic origin of onions between three main production areas in Japan and other countries by mineral composition. J. Agric. Food Chem. 55: 347-354. Bat, K.B., K. Eler, D. Mazej, B.M. Vodopivec, I. Mulič, P. Kump and N. Ogrinc. 2016. Isotopic and elemental characterisation of Slovenian apple juice according to geographical origin: Preliminary results. Food Chem. 203: 86-94. Batemanand, A.S. and S.D Kelly. 2007. Fertilizer nitrogen isotope signatures. Isot. Environ. Healt. S. 43(3): 237-247. Brandolini, V., P. Tedeschi, E. Cereti, A. Mailetti, D. Barile, J.D. Coïsson, D. Mazzotta, M. Arlorio and A. Martelli. 2005. Chemical and genomic combined approach applied to the characterization and identification of Italian Allium sativum L. J. Agric. Food Chem. 53: 678-683. Camargo, A.B., S. Resnizky, E.J. Marchevsky and J.M. Luco. 2010. Use of the Argentinean garlic (Allium sativum L.) germplasm mineral profile for determining geographic origin. J. Agric. Food Chem. J. Food Compo. Anal. 23: 586-591. Camin, F., M. Perini, L. Bontempo, S. Fabroni, W. Faedi, S. Magnani, G. Baruzzi, M. Bonoli, M.R. Tabilio, S. Musmeci, A. Rossmann, S.D. Kelly and P. Rapisarda. 2011. Potential isotopic and chemical markers for characterising organic fruits. Food Chem. 125(3): 1072-1082. Camin, F., M. Boner, L. Bontempo, C. Fauhl-Hassek, S.D. Kelly, J. Riedl and A. Rossmann. 2017. Stable isotope techniques for verifying the declared geographical origin of food in legal cases. Trends in Food Science & Technology. 61:176-187. Capell, R., D. Tetzlaff, I.A. Malcolm, A.J. Hartley and C. Soulsby. 2011. Using hydrochemical tracers to conceptualise hydrological function in a larger scale catchment draining contrasting geologic provinces. J. Hydrol. 408(1-2): 164-177. Da Silva, J.M., J.S. Donaldson, G. Reeves and T.A. Hedderson. 2012. Population genetics and conservation of critically small cycad populations: a case study of the Albany Cycad, Encephalartos latifrons (Lehmann). Biol. J. Linn. 105(2): 293-308. Clark, I.D. and P. Fritz. 1997. Environmental isotopes in hydrogeology. CRC press, Florida. Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus. 16: 436-468. Farquhar, G.D., J.R. Ehleringer and K.T. Hubick. 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant. Plant. Physiol. Plant. 40: 503-537. Gat, J.R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225–262. García Lampasona, S., J. Martinez and J.L. Burba. 2003. Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica. 132(1): 115-119. Girard, P. and C. Hillaire-Marcel. 1997. Determining the source of nitrate pollution in the Niger discontinuous aquifers using the natural 15N/14 N ratios. J. Hydrol. 199(3-4): 239-251. Hansen, A.-M.S., A. Fromberg and H.L. Frandsen. 2014. Authenticity and Traceability of Vanilla Flavors by Analysis of Stable Isotopes of Carbon and Hydrogen. 27.J. Agr. Food Chem. 62(42): 10326-10331. Hsu, H.C., K.K. Hwu, T.C. Deng and S.J. Tsao. 2006. Study on genetic relationship among Taiwan garlic clones by RAPD markers. J. Taiwan Soc. Hort. Sci. 52(1): 27. Hsu, H.C., K.K. Hwu, T.C. Deng, Y.F. Yen and S.J. Tsao. 2008 A study on genetic relationship among garlic clones with ISSR markers. J. Taiwa Soc. Hort. Sci. 54(4): 265. Jumba, I.O., N.F. Suttle, E.A. Hunter and S.O. Wandiga. 1995. Effects of soil origin and mineral composition and herbage species on the mineral composition of forages in the Mount Elgon region of Kenya. 2. Trace elements. Trop. Grasslands. 29: 47-52. Kaoru, A., Y. Aoyama, A. Mochizuki, Y. Homura, M. Kadokura and A. Yasui. 2007. Determination of the geographic origin of onions between three main production areas in Japan and other countries by mineral composition. J. Agric. Food Chem. 55: 347-354. Kelly, S., K. Heaton and J. Hoogewerff. 2005. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends. Food. Sci. Tech. 16: 555-567. Keppler, F. and J.T.G. Hamilton. 2008. Tracing the geographical origin of early potato tubers using stable hydrogen isotope ratios of methoxyl groups. Isot. Environ. Healt. 44(4): 337-347. Körner, C.h., G.D. Farquhar and S.C. Wong. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia. 88: 30-40. Lajtha, K. and J.D. Marshall. 1994. Sources of variation in the stable isotopic composition of plants, in: Stable isotopes in ecology and environmental science. Blackwell Scientific Publications. 1-21. Little, D.P. and D.W. Stevenson. 2007. A comparison of algorithms for the identification of specimens using DNA barcodes: examples from gymnosperms. Cladistics. 23(1): 1-21. Liu, T.S., H.Y. Guo, J.L. Chu and S. Lian. 2007. Preliminary study on heavy metal characteristics in sperpentinite-developed soil regions in eastern Taiwan. J. Taiwan Agr. Res. Liu, C.W., C.S. Jang, C.P. Chan, C.N. Lin and K.L. Lou. 2008. Characterization of groundwater quality in Kinmen Island using multivariate analysis and geochemical modeling. Hydrol. Process. 22(3): 376-383. Liu, H.C., C.F. You, C.Y. Chen, Y.C. Liu and M.T. Chung. 2014. Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium. Food Chem. 142(1): 439-445. Marshall, J.D. and J.W. Zhang. 1994. Carbon isotope discrimination and water use efficiency in native plants of the North Central Rockies. Ecology. 75(7): 1887-1895. O'Brien, D.M. 2015. Stable isotope ratios as biomarkers of diet for health research. Annu. Rev. Nutr. 35: 565-594. Peng, T.R., C.C. Huang, C.H. Wang, T.K. Liu, W.C. Lu and K.Y. Chen. 2012. Using oxygen, hydrogen, and tritium isotopes to assess pond water's contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan. Journal of Hydrology. 450: 105-116. Podio, N.S., M.V. Baroni, R.G. Badini, M. Inga, H.A. Ostera, M. Cagnoni, E.A. Gautier, P.P. García, J. Hoogewerff and D.A. Wunderlin. 2013. Elemental and isotopic fingerprint of Argentinean wheat. Matching soil, water, and crop composition to differentiate provenance. J. Agric. Food Chem. 61(16): 3763-3773. Retief, K., A.G. West and M.F. Pfab. 2014. Can stable isotopes and radiocarbon dating provide a forensic solution for curbing illegal harvesting of threatened cycads? J. Forensic Sci. 59(6): 1541. Rodrigues, C.I., R. Maia, M. Miranda, M. Ribeirinho, J.M.F. Nogueira and C. Mahuas. 2009. Stable isotope analysis for green coffee bean: A possible method for geographic origin discrimination. J. Food Compos. Anal. 22(5): 463-471. Rodrigues, C.I., M. Brunner, S. Steiman, G.J. Bowen, J.M.F. Nogueira, L. Gautz, T. Prohasda and C. Mahuas. 2011. Isotopes as tracers of the Hawaiian coffee-producing regions. Food Chem. 59(18):10239-10246. Santato, A., D. Bertoldi, M. Perini, F. Camin and L. Roberto. 2012. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market. J. Mass Spectrom. 47(9): 1132-1140. Sass, C., D.P. Little, D.W. Stevenson and C.D. Specht. 2007. DNA barcoding in the Cycadales: testing the potential of proposed barcoding markers for species identification of cycads. PLoS ONE. 2(11): e1154. Saurer, M., R.T.W. Siegwolf and F.H. Schweingruber. 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global. Change Biol. 10(12): 2109-2120. Shiga, Y., S. Tsutsui and T. Mikami. 2015. Morphological characteristics and ancestry of Japanese garlicclones-An overview. J. Appl. Hortic. 17(3): 210-212. Smith, R.G. 2005. Determination of the country of origin of garlic (Allium sativum) using trace metal profiling. J. Agric. Food Chem. 53: 4041-4045. Suzuki, Y., Y. Chikaraishi, N.O. Ogawa, N. Ohkouchi and T. Korenaga. 2008. Geographical origin of polished rice based on multiple element and stable isotope analyses. Food Chem. 109(2): 470-475. Smedley, M.P., T.E. Dawson, J.P. Comstock, L.A. Donovan, D.E. Sherrill, C.S. Cook and J.R. Ehleringer. 1991. Seasonal carbon isotope discrimination in a grassland community. Oecologia. 85(3): 314-320. Walcroft, A. S., W. B. Silvester, D. Whitehead and F. M. Kelliher.1997. Seasonal Changes in Stable Carbon Isotope Ratios within Annual Rings of Pinus radiata Reflect Environmental Regulation of Growth Processes. Australian Journal of Plant Physiology. 24(1): 57-68. West, J.B., J.M. Hurley and J.R. Ehleringer. 2009. Stable Isotope Ratios of Marijuana. I. Carbon and Nitrogen Stable Isotopes Describe Growth Conditions. J. Forensic Sci. 54(1): 84-89. Yurtsever, Y. and J.R. Gat. 1981. Atmospheric Waters. Stable isotope Hydrology: deuterium and oxygen-18 in the Water Cycle. Vienna: IAEA: 103-142. Zhang, L., J.R. Pan and C. Zhu. 2012. Determination of the geographical origin of Chinese teas based on stable carbon and nitrogen isotope ratios. J. Zhejiang Univ.-Sci. B (Biomed & Biotechnol). 13(10): 824-830.
摘要: 大蒜為國際市場上主要流通的香料作物之一,台灣加入世界貿易組織(WTO)後,為了維護國內大蒜市場價格,政府對不同來源國的大蒜設定關稅配額及進口限制,且伴隨著消費者對食安觀念的提升及為了達到防止非法進口與產地標示不實的大蒜,以科學的方式區分大蒜產地來源為不可或缺之技術。本研究擬分析大蒜之氫、氧、碳及氮同位素及22種微量元素,結合主成分分析(Principal Component Analysis, PCA)及判別分析(Discriminant Analysis, DA)進行數據統計,區分大蒜產地來源。研究收集來自台灣、阿根廷、韓國、中國及越南之大蒜進行分析,其中包括標示產地來源為台灣及中國的檢核樣品(AM-T及AM-C)。同位素分析結果顯示,以δ2H及δ18O能清楚區分阿根廷(南美洲)及亞洲地區的大蒜樣品,阿根廷大蒜之 2H及 18O皆明顯較亞洲大蒜為低。進一步利用主成分分析結果顯示其可對大蒜樣品產地進行區分,並能歸納出具有區分產地能力之特徵因子。接續,利用主成分分析歸納出之特徵因子進行判別分析,在經驗樣本充足的條件下,判別分析能建立有效分類大蒜產地的判別及分類函數,其判別率可達98%,經交叉驗證後則為95%。此外,本研究使用的檢核樣品AM-T及AM-C,可幫助了解主成分分析及判別分析在分類產地來源不明樣品時的可行性,檢核樣品於兩種分析方法中的分類結果皆相同,如AM-T之產地來源歸類為台灣,而AM-C之產地來源歸類為中國福建地區,此結果符合檢核樣品標示的產地來源。本次研究結果證實,透過分析大蒜樣品之氫、氧、碳及氮同位素及22種微量元素組成,結合主成分分析及判別分析之統計方法能有效區分大蒜樣品的產地來源,並確認其可信度及應用性,此研究技術將有助於其他農產品的產地鑑定。
Garlic is one of the primary spice crops circulating in the international market. After joining the World Trade Organization, the Taiwanese government developed tariff-rate quotas and import restrictions on garlic from different countries to maintain the market price of domestic garlic. In addition to an improvement in consumer awareness of food safety, to prevent garlic from being illegally imported from misidentified origins, a scientific technology was necessary for identifying the origin of garlic. This study identified the origin of garlic by combining laboratory analysis and statistical approaches. Data of laboratory analysis include results of 22 trace elements and stable isotopic compositions of hydrogen, oxygen, carbon and nitrogen. And the chemical and isotopic data were performed by statistical principal component analysis (PCA), and discriminant analysis (DA). Garlic samples were collected from Taiwan, Argentina, South Korea, China, and Vietnam. These samples included audit samples from Taiwan and China (AM-T and AM-C). The results of isotope analysis indicated that δ2H and δ18O could identify samples from Argentina (South America) and Asia. Argentinian garlic exhibited lower δ2H and δ18O ratios than Asian garlic did. The origins of garlic were identified in the plot of results from the PCA. The plot further indicated the characteristics of different origins. With the sufficient empirical data, classification functions for garlic from different origins were derived from DA based on the characteristics found in the plot of the PCA. The classification functions were applied to identify the origins of the garlic samples, and the identification rate was 98%. After cross-validation, the identification rate was 95%. In addition, the audit samples were useful in investigating the feasibility of using PCA and DA to identify the origin of unknown samples. The results of using the two methods to identify the two audit samples were consistent. The origin of sample AM-T was Taiwan, and the origin of sample AM-C was identified as Fujian, China. These results were in line with the origins of the audit samples, and the origins of these samples were not falsified. This study analyzed isotope ratios of hydrogen, oxygen, carbon, and nitrogen and compositions of 22 trace elements in garlic samples. Combining these analytical results with the PCA and DA, the origins of garlic samples were successfully identified. The technology used in this study is expected to be applied to techniques for identifying origins of other agricultural products in the future.
URI: http://hdl.handle.net/11455/97534
文章公開時間: 2018-08-16
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.