Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97536
標題: 應用鏈黴菌管理番茄萎凋病與根瘤線蟲
Use of Streptomyces spp. to manage Fusarium wilt and root-knot nematode of tomato
作者: 王至全
Chih-Chuan Wang
關鍵字: 鏈黴菌
生物防治
番茄萎凋病
根瘤線蟲
Streptomyces
Biocontrol
Fusarium wilt of tomato
root-knot nematode
引用: 石信德、黃振文。2005。保護植物的重要菌源─ 鏈黴菌。科學發展。 391: p. 22-27。 李明達。1995。應用幾丁質分解性放射線菌防治南方根瘤線蟲。國立 中興大學 植物病理學系碩士論文。p. 74。 林益昇。2009。甜瓜疫病。甜瓜保護:植物保護圖鑑系列19。P. 93-95。 台灣。 孫守恭、黃振文。1996。番茄萎凋病。世維出版社。p. 29-32。台中。 梅澤純夫。1953。抗菌性物質。培風館。東京。p. 320。 陳文雄、鄭安秀、王添成。1999。果菜類-蕃茄。蔬菜病蟲害綜合防治 專輯,果8頁。台灣省政府農林廳。南投。436頁。 陳正次。2002。番茄病蟲害與生理障礙的防治。番茄品種特性與栽培 技術全輯。行政院農委會種苗改良繁殖場印行。p.56-78。 湯佳蓉、高宏遠、鍾光仁、黃振文。2016。草莓炭疽病。植物醫學。 58: 165-166。 楊秋忠、沈佛亭。2009。溶磷微生物肥料之特性及效益。農業生技產 業季刊。p.57-59。 楊秋忠。2009。微生物肥料的施用之目的與要領。國立中興大學土壤 環境科學系。 蔡志濃、安寶貞、謝文瑞。2010。褐根病之發生,診斷鑑定及防治。 近年來我國重大作物病害之發生及其診斷,監測與防治研討會專 刊。p.147-163。 蔡東纂。2010。近年來國內植物寄生性線蟲之發生與防治。近年來我 國重大作物病害之發生及其診斷,監測與防治研討會專刊。 p.63-81。 Aghighi, S., G. Shahidi Bonjar and I. Saadoun. 2004. First report of antifungal properties of a new strain of Streptomyces plicatus (strain101) against four Iranian phytopathogenic isolates of Verticillium dahliae, a new horizon in biocontrol agents. Biotechnology (Faisalabad). 3: 90-97. Agrios, G.N. 2005. Plant Pathology. 5th eds. Department of Plant Pathology. University of Florida. United States of America. Ahemad, M. and M. Kibret. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science. 26: 1-20. Ahmed, E. and S.J. Holmström. 2014. Siderophores in environmental research: roles and applications. Microbial biotechnology. 7: 196-208. Alam, M., M. Manchur and M. Anwar. 2004. Isolation, purification, characterization of cellulolytic enzymes produced by the isolate Streptomyces omiyaensis. Pak J Biol Sci. 7: 1647-1653. Aldesuquy, H., F. Mansour and S. Abo-Hamed. 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiologica. 43: 465-470. Arzoo, K., S.K. Biswas and M. Rajik. 2012. Biochemical evidences of defence response in tomato against Fusarium wilt induced by plant extracts. Plant Pathology Journal. 11: 42. Atkinson, G.F. 1892. Some diseases of cotton. Ala Agr Exp Stn B. 41: 19. Bergeson, G.B. 1972. Concepts of nematode—fungus associations in plant disease complexes: A review. Experimental Parasitology. 32: 301-314. Bhatnagar, R., J. Doull and L. Vining. 1988. Role of the carbon source in regulating chloramphenicol production by Streptomyces venezuelae: studies in batch and continuous cultures. Can J Microbiol. 34: 1217-1223. Chen, C., J. Huang and D. Tzeng. 2000. Development of PMS 502-Streptomyces biopesticide and evaluation of its efficacy on the control of crop fungal diseases. Plant Pathol Bull. 9: 193. Choudhary, D.K., A. Prakash and B. Johri. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology. 47: 289-297. Clark, M.S. 2013. Plant molecular biology—a laboratory manual Springer Science & Business Media. Crowley, D., Y. Wang, C. Reid and P. Szaniszlo. 1991. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant and soil. 130: 179-198. Delvasto, P., A. Valverde, A. Ballester, J. Igual, J. Muñoz, F. González, et al. 2006. Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biol Biochem. 38: 2645-2654. Dewi, R.T.K., N.R. Mubarik and M.T. Suhartono. 2016. Medium optimization of β-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates Journal of Food and Agriculture: 116-125. Dixon, L.J., R.L. Schlub, K. Pernezny and L. Datnoff. 2009. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology. 99: 1015-1027. Doumbou, C.L., M. Hamby Salove, D.L. Crawford and C. Beaulieu. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection. 82: 85-102. Duijff, B.J., J.W. Meijer, P.A. Bakker and B. Schippers. 1993. Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth J Plant Pathol. 99:5-6: 277-289. El-Khallal, S.M. 2007. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid and salicylic acid): 2-changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Austr J Basic Appl Sci. 1: 717-732. Eisenback, J. D., Triantaphyllou, H. H., Nickle, W. R.. 1991 Root-knot Nematodes: Meloidogyne species and races. Manual Agr Nematolog. New York. pp 281 – 286. El‐Tarabily, K., M. Soliman, A. Nassar, H. Al‐Hassani, K. Sivasithamparam, F. McKenna, et al. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49: 573-583. Elad, Y. and R. Baker. 1985. The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology. 75: 1053-1059. Endo, A., K. Kakiki and T. Misato. 1970. Mechanism of action of the antifugal agent polyoxin D. J Bacteriol. 104: 189-196. Errakhi, R., A. Lebrihi and M. Barakate. 2009. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.). J Appl Microbiol. 107: 672-681. Fawcett, H.S. 1931. The importance of investigations on the effects of known mixtures of microorganisms. Phytopathology. 21: 545-550. Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012. Gooday, G. 1995. Cell walls. The growing fungus. Springer. p. 43-62. Gordon, S.A. and R.P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant physio. 26: 192. Goudjal, Y., O. Toumatia, A. Yekkour, N. Sabaou, F. Mathieu and A. Zitouni. 2014. Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res. 169: 59-65. Hankin, L. and S. Anagnostakis. 1975. Use of solid media for detection of enzyme production by fungi. Mycologia. 67: 597-607. Hayakawa, M. and H. Nonomura. 1987. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Bioeng. 65: 501-509. Hoagland, D.R., and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347. Hong, T.Y., C.W. Cheng, J.W. Huang and M. Meng. 2002. Isolation and biochemical characterization of an endo-1, 3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1, 3-β-glucan. Microbiol. 148: 1151-1159. Hsu, S. and J. Lockwood. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol. 29: 422-426. Huang, C.H., P.D. Roberts and L.E. Datnoff. 2011. Silicon suppresses Fusarium crown and root rot of tomato. J Phytopathol 159: 546-554. Hussain, M., M. Zouhar and P. Ryšánek. 2017. Effects of nematophagous fungi on viability of eggs and juveniles of meloidogyne incognita. JAPS. 27: 252-258. Hussey, R.S. 1985. Host-parasite relationships and associated physiological changes. Adv Treatise Meloido. 1:143. Hussey, R. S., Grundler, F. M. W., Perry, R. N., and Wright, D. J. 1998 Nematode parasitism of plants. The Physiology and Biochemistry of free-living and plant-parasitic. CABI Publishing, UK. pp 213 – 243. Jin, C.W., G.X. Li, X.H. Yu and S.J. Zheng. 2010. Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann bot-London. 105: 835-841. John, R.P., R. Tyagi, D. Prévost, S.K. Brar, S. Pouleur and R. Surampalli. 2010. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot. 29: 1452-1459. Jones, J., J. Jones, R. Stall and T. Zitter. 1991. Compendium of Tomato Diseases. APS Press, Minnesota. Jung, S., K. An, Y. Jin, R. Park, K. Kim, B. Shon, Kim, T. 2002. Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J Microbiol Biotechn. 12: 865-871. Küster, E. and S. Williams. 1964. Selection of media for isolation of streptomycetes. Nature. 202: 928. Kakvan, N., A. Heydari, H.R. Zamanizadeh, S. Rezaee and L. Naraghi. 2013. Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Prot. 53: 80-84. Kausar, H., M. Sariah, H.M. Saud, M.Z. Alam and M.R. Ismail. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation. 22: 367-375. Khamna, S., A. Yokota and S. Lumyong. 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microb Biot. 25: 649. Khan, T. and S. Husain. 1991. Effect of interaction of Meloidogyne incognita and Fusarium solani on the growth of papaya and nematode reproduction. Nematologia Mediterr. 19: 195-196. Kim, K.J., Y.J. Yang and J.G. Kim. 2003. Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Biol. 36: 185-189. Komada, H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev Plant Prot Res. 8: 114-124. Kurth, F., S. Mailänder, M. Bönn, L. Feldhahn, S. Herrmann, I. Grosse, et al. 2014. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways. Mol Plant Microbe In. 27: 891-900. Leben, C. and G. Keitt. 1954. Antibiotics and plant disease, effects of antibiotics in control of plant diseases. J Agr Food Chem. 2: 234-239. Lechevalier, H. 1980. The chemotaxonomy of actinomycetes. Actinomycete Taxonom. 6:277. Lee, M. 1995. Application of chitinolytic actinomycetes for controlling southern root-knot nematode. MS Thesis. Department of Plant Pathology. National Chung Hsing University, Taichung, Taiwan, ROC. Lee, S. Y., H. Tindwa, Y.S. Lee, K.W. Naing, S.H. Hong, Y. Nam, et al. 2012. Biocontrol of anthracnose in pepper using chitinase, beta-1, 3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J Microbiol Biotechn. 22: 1359-1366. Ling, N., C. Xue, Q. Huang, X. Yang, Y. Xu and Q. Shen. 2010. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl. 55: 673-683. Locci, R. 1989. Streptomycetes and related genera. Bergeys manual syste. 4: 2451-2504. Lounes, A., A. Lebrihi, C. Benslimane, G. Lefebvre and P. Germain. 1995. Regulation of valine catabolism by ammonium in Streptomyces ambofaciens, producer of spiramycin. Can J Microbiol. 41: 800-808. Malhotra, A. 2011. In vitro efficacy of various fungal and bacterial antagonists against rhizoctonia solani, causal agent of damoing off disease in Capsicun Annuum L. Int J Pharma Bioscie. 2:3:288-292. Marlatt, M., J. Correll, P. Kaufmann and P. Cooper. 1996. Two genetically distinct populations of Fusarium oxysporum f. sp. lycopersici race 3 in the United States. Plant Dis. 80: 1336-1342. Masalha, J., H. Kosegarten, Ö. Elmaci and K. Mengel. 2000. The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fert Soils. 30: 433-439. Milagres, A.M., A. Machuca and D. Napoleao. 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Meth. 37: 1-6. Miyadoh, S. 1997. Atlas of actinomycetes. Society for Actinomycetes Japan. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum. 15: 473-497. Naji, I. and W. Abu-Gharbieh. 2004. Effect of Meloidogyne javanica and M. incognita on resistance of muskmelon cultivars to Fusarium wilt. Phytopathologia Mediterranea 43: 360-368. Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters 170: 265-270. Neeno-Eckwall, E.C., L.L. Kinkel and J.L. Schottel. 2001. Competition and antibiosis in the biological control of potato scab. Can J Microbiol. 47: 332-340. Owens, R.G. and H.N. Specht. 1966. Biochemical alterations induced in host tissues by root-knot nematodes. Contrib. Boyce Thompson Inst 23: 181-198. Pérez-Miranda, S., N. Cabirol, R. George-Téllez, L. Zamudio-Rivera and F. Fernández. 2007. O-CAS, a fast and universal method for siderophore detection. J Microbiol Meth. 70: 127-131. Pal, K.K. 2006. Biological control of plant pathogens. Plant Hlth Instructo. 2 1117-1142. Palaniyandi, S., S. Yang and J.W. Suh. 2013. Extracellular proteases from Streptomyces phaeopurpureus ExPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J Appl Microbiol. 115: 207-217. Palaniyandi, S.A., S.H. Yang, L. Zhang and J.W. Suh. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biot. 97: 9621-9636. Passari, A.K., V.K. Mishra, V.K. Gupta, M.K. Yadav, R. Saikia and B.P. Singh. 2015. In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. Plos One. 10:9. Passari, A.K., V.K. Mishra, V.V. Leo, V.K. Gupta and B.P. Singh. 2016. Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol. Res 193: 57-73. Patten, C.L. and B.R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol. 42: 207-220. Pelaez, F. 2006. The historical delivery of antibiotics from microbial natural products—can history repeat? Biochem Pharmacol. 71: 981-990. Powell, NT .1963. Role of plant-parasitic nematodes in fungus disease. Phytopathology. 53:1:28. Powell, N. and C. Nusbaum. 1960. The black shank-root knot complex in flue-cured Tobacco. Phytopathology. 50:12:899. Pridham, T., L. Lindenfelser, O. Shotwell, F. Stodola, R. Benedict, and C. Foley,. 1956. Antibiotics against plant disease. I. Laboratory and green house survey. Phytopathol. 46: 568-575. Rahman, A., S. Hosokawa, Y. Oono, T. Amakawa, N. Goto and S. Tsurumi. 2002. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol. 130: 1908-1917. Ramezani Moghaddam, M., E. Mahdikhani Moghaddam, S. Baghaee Ravari and H. Rouhani. 2014. The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes. Biocontrol Sci Techn. 24: 279-290. Rao, V.K. and K. Krishnappa. 1996. Interaction of Fusarium oxysporum f. sp. ciceri with Meloidogyne incognita on chickpea in two soil types. Indian Phytopathology. 49: 142-147. Rey, T. and B. Dumas. 2017. Plenty is no plague: Streptomyces symbiosis with crops. Trends Plant Sci. 22: 30-37. Ruanpanun, P., H. Laatsch, N. Tangchitsomkid and S. Lumyong. 2011. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J Microb Biot. 27: 1373-1380. Ruanpanun, P., N. Tangchitsomkid, K.D. Hyde and S. Lumyong. 2010. Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J Microb Biot. 26: 1569-1578. Sadeghi, A., E. Karimi, P.A. Dahaji, M.G. Javid, Y. Dalvand and H. Askari. 2012. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microb Biot. 28: 1503-1509. Salla, T.D., T.R. da Silva, L.V. Astarita and E.R. Santarém. 2014. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Bioch. 85: 14-20. Sanchez, S. and A.L. Demain. 2002. Metabolic regulation of fermentation processes. Enzyme Microbe Tech. 31: 895-906. Sasser, J., J. Eisenback, C. Carter and A. Triantaphyllou. 1983. The international Meloidogyne project-its goals and accomplishments. Annu Rev Phytopathol. 21: 271-288. Schlatter, D.C. and L.L. Kinkel. 2015. Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces? BMC Evol Biol. 15: 186. Schrey, S.D. and M.T. Tarkka. 2008. Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Anton Leeuw Int J G. 94: 11-19. Sela, S., H. Schickler, I. Chet and Y. Spiegel. 1998. Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. Eur J Plant Pathol. 104: 59-67. Shen, J., L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, et al. 2011. Phosphorus dynamics: from soil to plant. Plant Physiol. 156: 997-1005. Shirling, E.T. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species1. Int J Syst Evol Micr. 16: 313-340. Singh, P.P., Y.C. Shin, C.S. Park and Y.R. Chung. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89: 92-99. Solanki, M.K., M.K. Malviya and Z. Wang. 2016. Actinomycetes bio-inoculants: A modern prospectus for plant disease management. Plant Growth Promoting Actinobacteria. Springer. p. 63-81. Someya, N., N. Kataoka, T. Komagata, K. Hirayae, T. Hibi and K. Akutsu. 2000. Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis. 84: 334-340. Spaepen, S. and J. Vanderleyden. 2011. Auxin and plant-microbe interactions. Cold Spring Harbor P. in biology 3. Tapio, E. and A. Pohto-Lahdenperä. 1991. Scanning electron microscopy of hyphal interaction between Streptomyces griseoviridis and some plant pathogenic fungi. J Agr Sci Finland. 63:435-441. Tranier, M.S., J. Pognant-Gros, R.D.l.C. Quiroz, C.N.A. González, T. Mateille and S. Roussos. 2014. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes. Braz Arch Biol Techn. 57: 831-841. Trudgill, D. 1991. Resistance to and tolerance of plant parasitic nematodes in plants. Annu Rev Phytopathol. 29: 167-192. Tsay, T. 1996. Occurrence and control strategies of crop soil sickness due to plant parasitic nematodes. Plant Pathology Bulletin. 5: 113-128. Tu, J. 1988. Antibiosis of Streptomyces griseus against Colletotrichum lindemuthianum. J Phytopathol. 121: 97-102. Viglierchio, D. and P. Yu. 1968. Plant growth substances and plant parasitic nematodes: II. Host influence on auxin content. Exp parasitol. 23: 88-95. Wahla, V., D.K. Maheshwari and V.K. Bajpai. 2012. Nematicidal fluorescent pseudomonads for the in vitro and in vivo suppression of root knot (Meloidogyne incognita) of Capsicum annuum L. Pest Manag Sci. 68: 1148-1155. Wallace, H. 1968. The influence of soil moisture on survival and hatch of Meloidogyne javanica. Nematologica 14: 231-242. Weller, D.M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol. 26: 379-407. Wellington, E. and T. Cross. 1983. Taxonomy of antibiotic producing Actinomycetes and new approaches to their selective isolation. Progr Ind Microbiol. 17: 7-36. Williams, S., M. Goodfellow, E. Wellington, J. Vickers, G. Alderson,and P. Sneath,. 1983. A probability matrix for identification of some streptomycetes. Microbiology. 129: 1815-1830. Wong, T. and W. Mai. 1973. Pathogenicity of meloidogyne hapla to lettuce as affected by inoculum level, plant age at inoculation and temperature. J Nematol. 5: 126. Yoon, G.Y., Y.S. Lee, S.Y. Lee, R.D. Park, H.N. Hyun, Y. Nam,. 2012. Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology 14: 175-184. Zhang, Y., H. He, H. Liu, H. Wang, X. Wang and W. Xiang. 2016. Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis. Microb Cell Fact. 15: 152. Zhao, S., C.-M. Du and C.-Y. Tian. 2012. Suppression of Fusarium oxysporum and induced resistance of plants involved in the biocontrol of Cucumber Fusarium Wilt by Streptomyces bikiniensis HD-087. World J Microb Biot. 28: 2919-2927. Zimmermann, W. 1990. Degradation of lignin by bacteria. J Biotechnol. 13: 119-130.
摘要: 番茄栽培面積廣泛,經濟價值高,為全球重要的蔬菜作物之一。但由尖孢鐮胞菌 (Fusarium oxysporum f. sp. lycopersici) 所引起之萎凋病與根瘤線蟲 (Meloidogyne sp.) 之侵害,每年皆造成嚴重的經濟損失,而當兩病害同時發生時尤為嚴重。現今人們對於施用化學藥劑造成環境與人體健康傷害的顧慮使得微生物製劑的發展日益受到重視,其中鏈黴菌即為常見的生物防治菌屬之一。本研究自土壤和栽培介質樣品中篩選出 234 株放線菌,與 Fusarium oxysporum f. sp. Lycopersici 和 Meloidogyne incognita 進行拮抗測試,挑選出對 FOL 抑制效果最好之菌株 CHA297 以及對 M. incognita 拮抗效果較好的四株菌株 CHA477、CHA489、CHA509、CHA514,經鑑定皆為鏈黴菌屬並進行後續試驗。在盆栽試驗中,CHA297 防治番茄萎凋病試驗結果顯示,預先接種 CHA297 能有效降低番茄萎凋病之罹病率達 69 %,同時也能使介質中 FOL 族群密度從 2.2×104 CFU g-1 降低至 1.0×103 CFU g-1。鏈黴菌株防治南方根瘤線蟲之盆栽試驗結果顯示,CHA509 能抑制根瘤線蟲侵染番茄根部,降低 20.8 % 的發病程度;CHA477 與 CHA489 雖然無法降低根瘤指數,但卻和 CHA509 一樣能促進植物生長,地上部乾重有顯著增加;接種後 30 天,測定介質中二齡幼蟲之數目,四株菌株皆能有效降低二齡幼蟲數,其中以 CHA489 與 CHA509 處理之根瘤線蟲數從 114 J2 / 70 g 降至 18 J2 / 70 g,效果最為顯著。鏈黴菌防治複合感染之盆栽試驗結果顯示,CHA297 與 CHA489、 CHA509 共同接種並無法顯著降低在有根瘤線蟲感染情況下之萎凋病罹病率。綜合上述研究結果,CHA297 與 CHA509 兩株菌株具有潛力各別開發成防治番茄萎凋病和根瘤線蟲之生物防治劑,但卻無法共同應用於兩種病害複合感染之防治上,此部分仍需進一步的探討與研究。
Tomato, widely cultivated and of high economic value, is an important crop. However, Fusarium wilt caused by Fusarium oxysporum f. sp. Lycopersici and root-knot caused by Meloidogyne sp. cause serious economic losses of tomato cultivate, and their coinfection results in more economic losses. Nowadays people are worried about the environmental and human health damage caused by the use of chemical agents. The development of biological control agents has attracted increasing attention. Streptomyces is one of the common bacteria which used for biological control. In this study, 234 strains of actinomycetes were screened from soil and growing medium, and their antagonistic ability against FOL and M. incognita were evaluated. CHA297 showed the best antagonistic ability against FOL and four strains CHA477, CHA489, CHA509 and CHA514 had a better antagonistic effect against M. incognita. All of these strains were identified as Streptomyces spp. and conducted to further experiments. In the pot experiment, pre-inoculation of CHA297 could effectively reduce disease severity of Fusarium wilt by 69%. The density of FOL population in the peat was decreased from 2.2×104 CFU g-1 to 1.0 x 103 CFU g-1. The pot experiment of Streptomyces strains to control root-knot nematode experiment showed that strain CHA509 significantly inhibited root-knot nematode infection the root of tomato and reduce the disease incidence by 20.8 %. Although CHA477 and CHA489 couldnot reduce the galling index, they promoted plant growth like CHA509. The number of second juveniles of M. incognita in the peat was measured at 30 days after inoculation. The four strains could effectively decrease the density of second juveniles of M.incognita, and CHA489, CHA509 reduced the second juveniles density from 114 J2/70 g to 18 J2/70 g. The co-inoculation of CHA297 with CHA489, CHA509 did not reduce the disease severity of Fusarium wilt when root-knot nematode and Fusarium coinfected the tomato. Based on the above results, CHA297 and CHA509 strains have the potential to be developed as biocontrol agents against Fusarium wilt and root-knot nematode separately, although they may not effectively be control the coinfection by root-knot nematode and Fusarium oxysporum f. sp. lycopersici. It is necessary to further evaluated how to control the coinfection by using biological control agents.
URI: http://hdl.handle.net/11455/97536
文章公開時間: 2018-08-22
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.