Please use this identifier to cite or link to this item:
標題: 磷系甲基壓克力及其環氧樹脂固化物性質
Synthesis and characterization of phosphorous containing methacrylate monomers, curing with epoxy and studied their polymers properties
作者: 林于翔
Yu Hsiang Lin
關鍵字: 間苯二酚
methacrylic anhydride
Epoxy thermoset
引用: 1. Garg, A. C.; Mai, Y.-W. Failure mechanisms in toughened epoxy resins—A review. Composites Science and Technology 1988, 31 (3), 179-223. 2. Morgan, R., Structure-property relations of epoxies used as composite matrices. In Epoxy Resins and Composites I, Springer: 1985; pp 1-43. 3. T., S. Cyclic organophosphorus compounds. 1972. 4. 著, 桓.; 譯, 賴., 環氧樹脂應用實務. 復漢出版社: 1993. 5. May, C., Epoxy resins: chemistry and technology. Routledge: 2018. 6. Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of ultrastructure research 1969, 26 (1-2), 31-43. 7. Luft, J. H. Improvements in epoxy resin embedding methods. The Journal of Cell Biology 1961, 9 (2), 409-414. 8. Lu, S.-Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in polymer science 2002, 27 (8), 1661-1712. 9. Irvine, D.; McCluskey, J.; Robinson, I. Fire hazards and some common polymers. Polymer Degradation and Stability 2000, 67 (3), 383-396. 10. Lomakin, S. M.; Zaikov, G. E., Ecological aspects of polymer flame retardancy. Vsp: 1999; Vol. 10. 11. Lewin, M. Flame retardancy of polymeric materials. CHIMICA OGGI-CHEMISTRY TODAY 1997, 15 (6-7), 41-41. 12. Sorathia, U., Flame retardant materials for maritime and naval applications. In Advances in fire retardant materials, Elsevier: 2008; pp 527-572. 13. Innes, J. In Flame retardants and their market applications, Flame retardants, 1996; 1996; pp 61-69. 14. Rakotomalala, M.; Wagner, S.; Döring, M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials 2010, 3 (8), 4300-4327. 15. 謝正悅; 林慶炫; 王春山. 非鹵素難燃電子材料-含磷環氧樹脂. 科學發展月刊 2000, 第28卷第11期. 16. Lin, Y.; Jiang, S.; Gui, Z.; Li, G.; Shi, X.; Chen, G.; Peng, X. Synthesis of a novel highly effective flame retardant containing multivalent phosphorus and its application in unsaturated polyester resins. RSC Advances 2016, 6 (89), 86632-86639. 17. Lin, C. H.; Lin, C. H. Synthesis and properties of polyimides derived from 1, 4‐bis (4‐aminophenoxy)‐2‐(6‐oxido‐6H‐dibenz [c, e][1, 2] oxaphosphorin‐6‐yl) phenylene. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (14), 2897-2912. 18. Chen, C.-H.; Shiao, W.-F.; Ariraman, M.; Lin, C.-H.; Juang, T.-Y. High-performance thermosets derived from acetovanillone-based reactive polyethers. Polymer 2018. 19. Lin, C. H.; Chang, S. L.; Wei, T. P. High‐Tg Transparent Poly (ether sulfone) s Based on Phosphinated Bisphenols. Macromolecular Chemistry and Physics 2011, 212 (5), 455-464. 20. Lin, C. H.; Lin, H. T.; Tian, Y. W.; Dai, S. A.; Su, W. C. Preparation of phosphinated bisphenol from acid‐fragmentation of 1, 1, 1‐tris (4‐hydroxyphenyl) ethane and its application in high‐performance cyanate esters. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (22), 4851-4860. 21. Hougham, G.; Tesoro, G.; Shaw, J. Synthesis and properties of highly fluorinated polyimides. Macromolecules 1994, 27 (13), 3642-3649. 22. Nakamura, S.; Arima, M. Characterization of the network structure o epoxy resins cured with active esters. International Journal of Polymer Analysis and Characterization 1995, 1 (1), 75-86. 23. Takeuchi, K.; Suzuki, E.; Morinaga, K.; Arita, K., Active ester resin, method for producing the same, thermosetting resin composition, cured product of the thermosetting resin composition, semiconductor encapsulating material, pre-preg, circuit board, and build-up film. Google Patents: 2014. 24. Arita, K.; Suzuki, E., Thermosetting resin composition, cured product thereof, active ester resin, semiconductor encapsulating material, prepreg, circuit board, and build-up film. Google Patents: 2014. 25. Dershem, S. M., Hydrolytically resistant thermoset monomers. Google Patents: 2013. 26. Yeager, G. W.; Colborn, R. E., Poly (phenylene ether)—polyvinyl thermosetting resin. Google Patents: 2003. 27. Chen, C.-H.; Liu, C.-H.; Ariraman, M.; Lin, C.-H.; Juang, T.-Y. Phosphinated Poly (aryl ether) s with Acetic/Phenyl Methacrylic/Vinylbenzyl Ether Moieties for High-T g and Low-Dielectric Thermosets. ACS Omega 2018, 3 (6), 6031-6038. 28. Chen, C. H.; Tsai, Y. L.; Jeng, R. J.; Lin, C. H. Identification of the reaction mechanism between phenyl methacrylate and epoxy and its application in preparing low-dielectric epoxy thermosets with flexibility. Polymer 2018, 140, 225-232. 29. Yeager, G. W.; Colborn, R. E. US Patent 6352782 BS 2002. 30. Zúñiga, C.; Larrechi, M. S.; Lligadas, G.; Ronda, J. C.; Galià, M.; Cádiz, V. Phosphorus flame retardant polybenzoxazine foams based on renewable diphenolic acid. Polymer degradation and stability 2013, 98 (12), 2617-2626.
摘要: 本實驗是藉由低成本的DOPO、Acetone、Resorcinol(及Catechol)利用兩步反應合成兩種低成本、更高含磷量的雙酚單體。再將單體中的羥基結構以甲基丙烯酸酐進行改質,與市售環氧樹酯HP-7200進行固化,在固化的同時甲基丙烯酸基團也會進行自身交聯固化,使其有更高的交聯密度,更高的熱性質。測試其固化物的玻璃轉移溫、熱裂解溫度、介電性質等等。Resorcinol系統經MMA改質後Tg約237 oC ;氮氣環境下Td5%約407 oC ; Dk和Df分別為2.91及0.008。Catechol系統經MMA改質後Tg約208 oC ; 氮氣環境下Td5%約416 oC ; Dk和Df分別為2.87及0.008。此固化物之熱性質和介電性質,Resorcinol系統優於商品DMP進行甲基壓克力改質後之性質 (Tg約220 oC ; 氮氣環境下Td5%約403 oC ; Dk和Df分別為3.07及0.007)。 第二部分是利用本研究合成之單體DPAC-mma和DPAR-mma作為商品SA9000/HP7200固化物之阻燃添加劑,成功將UL-94難燃測試V-1等級之SA9000/HP7200固化物提升至V-0等級。 於實驗過程我們由H-NMR發現兩個現象 (1)DOPO和Acetone反應後的單體,當Temperature >140 oC時會脫去Acetone還原成DOPO (2) 兩個羥基會因為立體障礙的不同,而有不同的反應性。
In this experiment, two low-cost, higher phosphorus-containing bisphenol monomers were synthesized by a two-step reaction using low-cost DOPO, acetone, and resorcinol (or catechol). The hydroxyl structure in the monomer was modified with methacrylic anhydride and cured with commercially available epoxy resin, HP7200. At the same time of curing, the methacrylic group will also undergo self-crosslinking and solidification to achieve its higher crosslinking density, which gives the corresponding polymer the enhanced thermal properties. The cured polymers were tested for glass transition temperature, thermal cracking temperature and dielectric properties. In resorcinol system, the Tg is about 237 oC and Td5% is about 407 oC under the nitrogen atmosphere; Dk and Df values are 2.91 and 0.008, respectively. The catechol system has a Tg of about 208 oC; in a nitrogen atmosphere, Td5% is about 416 oC; Dk and Df values are 2.87 and 0.008, respectively. The thermal and dielectric properties of resorcinol system containing cured polymers are superior to the DMP-mma (Tg = 220 oC, Td5% under nitrogen is 403 oC, and Dk, Df values are 3.07 and 0.007, respectively). In second part of this thesis, we used two monomers DPAC-mma, and DPAR-mma, which were cured by using commercial SA9000/HP7200 curing agents. The cured product has enhanced properties under UL-94 flame retardant test from V-1 grade to V-0 grade. The experimental investigation revels, that the monomer DPA will undergo reverse reaction when temperature is greater than 140 oC, and the two hydroxyl groups will be different in reactivity due to the influence of steric hindrance.
文章公開時間: 2021-08-10
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.