Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97599
標題: 1. 碘化亞銅搭配草醯胺配體催化芳香基氯化物與硫醇之交互耦合反應 2. 碳-硫鍵的形成在合成Vortioxetine之應用
1. CuI/Oxalic Diamide-Catalyzed Cross-Coupling of Thiols with Aryl Chlorides 2. Application of C-S Bond Formation on Vortioxetine Synthesis
作者: 陳以鈴
Yi-Ling Chen
關鍵字: 草醯胺
芳香基氯化物
硫醇
交互耦合反應
Oxalic Diamide
Aryl Chlorides
Thiols
Cross-Coupling
引用: 1. (a) Wurtz A. Ann. Chim. Phys. 1855, 44, 275; (b) Wurtz A. Ann. Chim. Phys. 1855, 96, 364. 2. (a) Gomberg, M.; Bachmann, W. E. J. Am. Chem. Soc. 1924, 46, 2339; (b) Bachmann W. E.; Hoffman, R. A. Org. React. 1944, 2, 224; (c) Dermer, O. C.; Edmison, M. T. Chem. Rev. 1957, 57, 77. 3. (a) Grignard, V. Compt. Rend. 1900, 130, 1322; (b) Shirley, D. A. Org. React. 1954, 8, 28; (c) Lai, Y.-H. Synthesis 1981, 8, 585; (d) Maruyama, K.; Katagiri, T. J. Phys. Org. Chem. 1989, 2, 205. 4. (a) Bailey, W. F.; Patricia, J. J. J. Organomet. Chem. 1988, 352, 1; (b) Seyferth, D. Organometallics 2006, 25, 2. 5. (a) Normant, J. F. Synthesis 1972, 2, 63; (b) Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952, 17, 1630. 6. Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174. 7. (a) Phillips, F. C. J. Am. Chem. 1894, 16, 255; (b) Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Rüttinger, R.; Kojer, H. Angew. Chem. 1959, 71, 176; (c) Hafner, W.; Jira, R.; Sedlmeier, J.; Smidt, J. Chem. Ber. 1962, 95, 1575. 8. (a) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320; (b) Heck, R. F. Org. React. 1982, 27, 345; (c) Crisp, G. T. Chem. Soc. Rev. 1998, 27, 427. 9. Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374. 10. Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408. 11. (a) Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821; (b) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117. 12. (a) Lee, J.-Y.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 5616; (b) Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788; (c) Alacid, E.; Nájera, C. J. Org. Chem. 2008, 73, 2315. 13. (a) Miyaura, N.; Suzuki, A. Chem. Commun. 1979, 19, 866; (b) Suzuki, A. Pure Appl. Chem. 1991, 63, 419; (c) Martin, A. R.; Yang, Y. Acta Chem. Scand. 1993, 47, 221. 14. (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636; (b) Stille, J. K. Angew. Chem. 1986, 25, 508; (c) Mitchell, T. N. Synthesis 1992, 9, 803. 15. Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. 2012, 51, 5062. 16. (a) Pla, D.; Marchal, A.; Olsen, C. A.; Cuevas, C.; Albericio, F.; Alvarez, M. J. Med. Chem. 2006, 49, 3257; (b) King, A. O.; Yasuda, D. P. Topics Organomet. Chem. 2004, 6, 205; (c) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442. 17. Hu, D.; Yu, J.; Barbara, P. F. J. Am. Chem. Soc. 1999, 121, 6936. 18. (a) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945; (b) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem. Int. Ed. 2007, 46, 5359. 19. Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1439. 20. Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983, 12, 927. 21. Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901. 22. Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem. Int. Ed. 1995, 34, 1348. 23. (a) Maiti, D.; Fors, B. P.; Henderson, J. L.; Nakamura, Y.; Buchwald, S. L. Chem. Sci. 2011, 2, 57; (b) Ruiz-Castillo, P.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 3085. 24. Brusoe, A. T.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 8460. 25. Yan, N.-N.; Wu, F.-T.; Zhang, J.; Wei, Q.-B.; Liu, P. Xie, J.-W.; Dai, B. Asian J. Org. Chem. 2014, 3, 1159. 26. Zhou, W.; Fan, M.-Y.; Yin, J.; Jiang, Y.-G.; Ma, D.-W. J. Am. Chem. Soc. 2015, 137, 11942. 27. Gao, J.; Bhunia, S.; Wang, K.-L.; Gan, L.; Xia, S.-H.; Ma, D.-W. Org. Lett. 2017, 19, 2809. 28. Liu, Z.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 1570. 29. Corberán, R.; Peris, E. Organometallics 2008, 27, 1954. 30. Hartwig, J. F. Nature 2008, 455, 314. 31. Eichman, C. C.; Stambuli, J. P. Molecules 2011, 16, 590. 32. Wang, X.; Cuny, G. D.; Noël, T. Angew. Chem. Int. Ed. 2013, 52, 7860. 33. Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548. 34. Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. J. Am. Chem. Soc. 2016, 138, 1760. 35. Jiang, M.; Li, H.; Yang, H.; Fu, H. Angew. Chem. 2017, 56, 874. 36. Liu, B.; Lim, C.-H.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139, 13616. 37. (a) Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 7, 13; (b) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385. 38. Tsutsumi, K.; Yabukami, T.; Fujimoto, K.; Kawase, T.; Morimoto, T.; Kakiuchi, K. Organometallics 2003, 22, 2996. 39. Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001, 66, 8677. 40. (a) Fernandez-Rodriguez, M. A.; Shen, Q. L.; Hartwig, J. F. Chem. Eur. J. 2006, 12, 7782; (b) Fernández-Rodríguez, M. A.; Shen, Q. L.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180. 41. Sayah, M.; Organ, M. G. Chem. Eur. J. 2011, 17, 11719. 42. Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397. 43. Cristau, H. J.; Chabaud, B.; Chêne, A.; Christol, H. Synthesis 1981, 11, 892. 44. Zhang, Y.; Ngeow, K. C.; Ying, J. Y. Org. Lett. 2007, 9, 3495. 45. Jammi, S.; Barua, P.; Rout, L.; Saha, P.; Punniyamurthy, T. Tetrahedron Lett. 2008, 49, 1484. 46. Wu, W.-Y.; Wang, J.-C.; Tsai, F.-Y. Green Chem. 2009, 11, 326. 47. Wu, J.-R.; Lin, C.-H.; Lee, C.-F. Chem. Commun. 2009, 4450. 48. Ku, X.; Huang, H.; Jiang, H.-L.; Liu, H. J. Comb. Chem. 2009, 11, 338. 49. Bandaru, M.; Sabbavarpu, N. M.; Katla, R.; Yadavalli, V. D. N. Chem. Lett. 2010, 39, 1149. 50. Liu, T.-J.; Yi, C.-L.; Chan, C.-C.; Lee, C.-F. Chem. Asian J. 2013, 8, 1029. 51. Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803. 52. Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517. 53. Deng, W.; Zou, Y.; Wang, Y.-F.; Liu, L.; Guo, Q.-X. Synlett. 2004, 1254. 54. Carril, M.; SanMartin, R.; Domínguez, E.; Tellitu, I. Chem. Eur. J. 2007, 13, 5100. 55. Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Eur. J. Org. Chem. 2008, 640. 56. Chen, C.-K.; Chen, Y.-W.; Lin, C.-H.; Lin, H.-P.; Lee, C.-F. Chem. Commun. 2010, 46, 282. 57. Kao, H.-L.; Chen, C.-K.; Wang, Y.-J.; Lee, C.-F. Eur. J. Org. Chem. 2011, 1776. 58. Kamal, A.; Srinivasulu, V.; Murty, J. N. S. R. C.; Shankaraiah, N.; Nagesh, N.; Reddy, T. S.; Rao, A. V. S. Adv. Synth. Catal. 2013, 355, 2297. 59. Rezaei, N.; Movassagh, B. Tetrahedron Lett. 2016, 57, 1625. 60. Kaldor, S. W.; Kalish, V. J.; Davies, J. F.; Shetty, B. V.; Fritz, J. E.; Appelt, K.; Burgess, J. A.; Campanale, K. M.; Chirgadze, N. Y.; Clawson, D. K.; Dressman, B. A.; Hatch, S. D.; Khalil, D. A.; Kosa, M. B.; Lubbehusen, P. P.; Muesing, M. A.; Patick, A. K.; Reich, S. H.; Su, K. S.; Tatlock, J. H. J. Med. Chem. 1997, 40, 3979. 61. de Carvalho, L. P.; Lin, G.; Jiang, X.; Nathan C. J. Med. Chem. 2009, 52, 5789. 62. Chen, Y.; Cho, C.-H.; Shi, F.; Larock, R. C. J. Org. Chem. 2009, 74, 6802. 63. Hirokawa, Y.; Kinoshita, H.; Tanaka, T.; Nakata, K.; Kitadai, N.; Fujimoto, K.; Kashimoto, S.; Kojima, T.; Kato, S. J. Med. Chem. 2008, 51, 1991. 64. Meng, C. Q.; Somers, P. K.; Hoong, L. K.; Zheng, X. S.; Ye, Z.; Worsencroft, K. J.; Simpson, J. E.; Hotema, M. R.; Weingarten, M. D.; MacDonald, M. L.; Hill, R. R.; Marino, E. M.; Suen, K.-L.; Luchoomun, J.; Kunsch, C.; Landers, L. K.; Stefanopoulos, D.; Howard, R. B.; Sundell, C. L.; Saxena, U.; Wasserman, M. A.; Sikorski, J. A. J. Med. Chem. 2004, 47, 6420. 65. Llorca, P.-M.; Lançon, C.; Brignone, M.; Rive, B.; Salah, S.; Ereshefsky, L.; Francois, C. Curr. Med. Res. Opin. 2014, 30, 2589. 66. Fan, M.; Zhou, W.; Jiang, Y.; Ma, D. Org. Lett. 2015, 17, 5934. 67. (a) Xia, S.; Gan, L.; Wang, K.; Li, Z.; Ma, D. J. Am. Chem. Soc. 2016, 138, 13493; (b) Fan, M.; Zhou, W.; Jiang, Y.; Ma, D. Angew. Chem. Int. Ed. 2016, 55, 6211. 68. Chen, C.-W.; Chen, Y.-L.; Reddy, D. M.; Du, K.; Lee, C.-E.; Shih, B.-H.; Xue, Y.-J.; Lee, C.-F. Chem. Eur. J. 2017, 23, 10087. 69. Kao, H.-L.; Chen, C.-K.; Wang, Y.-J.; Lee, C.-F. Eur. J. Org. Chem. 2011, 2011, 1776. 70. Huang, Y.-T.; Tsai, W.-T.; Badsara, S. S.; Chan, C.-C.; Lee, C.-F. J. Chin. Chem. Soc. 2014, 61, 967. 71. Kupfer, D. J.; Frank, E.; Phillips, M. L. Lancet 2012, 379, 1045. 72. Gibb, A.; Deeks, E. D. Drugs 2014, 74, 135. 73. du Jardin, K. G.; Jensen, J. B.; Sanchez, C.; Pehrson, A. L. Eur. Neuropsychopharmacol. 2014, 24, 160. 74. Bang-Andersen, B.; Ruhland, T.; Jørgensen, M.; Smith, G.; Frederiksen, K.; Jensen, K. G.; Zhong, H.-L.; Nielsen, S. M.; Hogg, S.; Mørk, A.; Stensbøl, T. B. J. Med. Chem. 2011, 54, 3206. 75. Mao, Y.; Jiang, L.-B.; Chen, T.-Y.; He, H.-J.; Liu, G.; Wang, H. Synthesis 2015, 47, 1387. 76. (a) Ruhland, T.; Smith, G. P.; Bang-Andersen, B.; Pueschl, A.; Moltzen, E. K.; Andersen, K. WO 2003,029,232, 2003. (b) Ruhland, T.; Christensen, K. L. WO 2014,128,207, 2014. 77. Wang, B.-Y. WO 2015,169,130, 2015. 78. Liu, X.-J. CN 104,292,183, 2015. 79. Venkanna, G. T.; Arman, H. D.; Tonzetich, Z. J. ACS Catal. 2014, 4, 2941. 80. Fernández-Rodríguez, M. A.; Hartwig, J. F. J. Org. Chem. 2009, 74, 1663. 81. Eichman, C. C.; Stambuli, J. P. J. Org. Chem. 2009, 74, 4005. 82. Xu, H.-J.; Zhao, Y.-Q.; Feng, T.; Feng, Y.-S. J. Org. Chem. 2012, 77, 2878. 83. Kamimura, A.; Sasatani, H.; Hashimoto, T.; Ono, N. J. Org. Chem. 1989, 54, 4998. 84. Kovacs, S.; Novak, Z. Org. Biomol. Chem. 2011, 9, 711. 85. Xu, H.-J.; Liang, Y.-F.; Zhou, X.-F.; Feng, Y.-S. Org. Biomol. Chem. 2012, 10, 2562. 86. Lu, S.; Drees, M.; Yao, Y.; Boudinet, D.; Yan, H.; Pan, H.; Wang, J.; Li, Y.; Usta, H.; Facchetti, A. Macromolecules 2013, 46, 3895.
摘要: 本論文中的第一部分,我們利用銅金屬搭配N,N'-二烷基草醯胺 (L5) 作為配體,催化芳香基氯化物與硫醇進行交互耦合反應。不論是芳香基或烷基硫醇,都能與活性差的芳香基氯化物反應得到目標產物,且都有優異的產率。此反應系統對受質應用性廣泛且也具有良好的官能基容忍性。重要的是,草醯胺配體不但穩定也容易從廉價的起始物製備。 在第二部分中,我們將銅金屬搭配N,N'-二烷基草醯胺 (L5) 為配體的系統,應用在催化1,2-二碘苯與2,4-二甲基苯硫酚進行交互耦合反應,完成抗憂鬱症藥物Vortioxetine的合成。
In the first part of this thesis, we report a general copper-catalyzed cross-coupling of thiols with aryl chlorides by using N,N'-dialkyl oxalic diamide (L5) as the ligand. Both aryl- and alkyl thiols can be coupled with unactivated aryl chlorides to give the desired products in good yields for the first time. Furthermore, this system features broad substrate scope and good tolerance of functional groups. Importantly, the oxalic diamides are stable and can be prepared easily from commercially available cheap starting materials. The second part of this thesis, application of this copper-catalyzed cross-coupling of 2,4-dimethylyhiophenol with 1,2-diiobenzene by using N,N'-dialkyl oxalic diamide (L5) as the ligand has been described for the synthesis of antidepressant Vortioxetine.
URI: http://hdl.handle.net/11455/97599
文章公開時間: 2020-08-07
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.