Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97612
標題: 反應曲面法與主成份分析應用在化學的優化與分類
Response surface methodology (RSM) and principal component analysis (PCA) for the application of optimization and classification in chemistry
作者: 林怡君
Yi-Jun Lin
關鍵字: 反應曲面法
主成份分析
RSM
PCA
引用: 1. Kim, J., et al., In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers, 2008. 89(12): p. 1144-53. 2. Fangyuan Li, B.-c.B., and Kun Na*, Acetylated Hyaluronic Acid/Photosensitizer Conjugate for the Preparation of Nanogels with Controllable Phototoxicity: Synthesis, Characterization, Autophotoquenching Properties, and in Witro Phototoxicity against HeLa Cells. Bioconjugate Chem, 2010: p. 1312-1320. 3. Yoo, H.S., et al., Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials, 2005. 26(14): p. 1925-33. 4. Kim, J., et al., Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels. J Mater Sci Mater Med, 2008. 19(11): p. 3311-8. 5. Collins, M.N. and C. Birkinshaw, Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications. Journal of Applied Polymer Science, 2007. 104(5): p. 3183-3191. 6. Hahn, S.K., et al., Synthesis and degradation test of hyaluronic acid hydrogels. Int J Biol Macromol, 2007. 40(4): p. 374-80. 7. Oh, E.J., et al., Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. J Biomed Mater Res A, 2008. 86(3): p. 685-93. 8. Wang, W., A novel hydrogel crosslinked hyaluronan with glycol chitosan. J Mater Sci Mater Med, 2006. 17(12): p. 1259-65. 9. Maltese, A., et al., Novel polysaccharides-based viscoelastic formulations for ophthalmic surgery: rheological characterization. Biomaterials, 2006. 27(29): p. 5134-42. 10. Noble, P.W., Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology, 2002. 21(1): p. 25-29. 11. Oh, E., et al., Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. Journal of Biomedical Materials Research Part A, 2008(3). 12. Collins, M. and C. Birkinshaw, Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications. Journal of Applied Polymer Science, 2007. 104(5): p. 3183-3191. 13. DAVID D. ALLISON, B.S.E., K. JANE GRANDE-ALLEN, Ph.D., Review. Hyaluronan: A Powerful Tissue Engineering Tool. TISSUE ENGINEERING, 2006. 12(8). 14. Kanchwala, S.K., L. Holloway, and L.P. Bucky, Reliable Soft Tissue Augmentation: A Clinical Comparison of Injectable Soft-Tissue Fillers for Facial-Volume Augmentation. Annals of Plastic Surgery, 2005. 55(1): p. 30. 15. YADAV, A., An insight on hyaluronic acid in drug targeting and drug delivery. Journal of Drug Targeting, 2008. 16(2): p. 91-107. 16. Leonelli, F., et al., Design, Synthesis and Applications of Hyaluronic Acid-Paclitaxel Bioconjugates. Molecules, 2008. 13(2): p. 360-378. 17. Rosato, A., et al. HYTAD1-p20: A new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. 2006. Elsevier. 18. Esposito, E., E. Menegatti, and R. Cortesi, Hyaluronan-based microspheres as tools for drug delivery: a comparative study. International Journal of Pharmaceutics, 2005. 288(1): p. 35-49. 19. Luo, Y., K.R. Kirker, and G.D. Prestwich, Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. Journal of Controlled Release, 2000. 69(1): p. 169-184. 20. Luo, Y. and G. Prestwich, Synthesis and Selective Cytotoxicity of a Hyaluronic Acid-Antitumor Bioconjugate. bioconjugate Chemistry, 1999. 10: p. 755-763. 21. Baggenstoss, B.A. and P.H. Weigel, Size exclusion chromatography–multiangle laser light scattering analysis of hyaluronan size distributions made by membrane-bound hyaluronan synthase. Analytical Biochemistry, 2006. 352(2): p. 243-251. 22. Soltes, L. and R. Mendichi, Molecular characterization of two host-guest associating hyaluronan derivatives. Biomed Chromatogr, 2003. 17(6): p. 376-84. 23. Sanya Hokputsa, K.J. and S.E.H. Catherine Alexander, A comparison of molecular mass determination of hyaluronic acid using SEC/MALLS and sedimentation equilibrium. European Biophysics Journal, 2003. 32: p. 450-456. 24. olteAs, L.S., et al., Molecular characteristics of some commercial high-molecular-weight hyaluronans. Biomed. Chromatogr, 2002. 16: p. 459-462. 25. Mendichi, R. and A. Giacometti Schieroni, Fractionation and characterization of ultra-high molar mass hyaluronan: 2. On-line size exclusion chromatography methods. Polymer, 2002. 43(23): p. 6115-6121. 26. Mahoney, D.J., et al., Novel methods for the preparation and characterization of hyaluronan oligosaccharides of defined length. Glycobiology, 2001. 11(12): p. 1025-1033. 27. Volpi, N., Disaccharide mapping of chondroitin sulfate of different origins by high-performance capillary electrophoresis and high-performance liquid chromatography. Carbohydrate Polymers, 2004. 55(3): p. 273-281. 28. Maccari, F., F. Tripodi, and N. Volpi, High-performance capillary electrophoresis separation of hyaluronan oligosaccharides produced by Streptomyces hyalurolyticus hyaluronate lyase. Carbohydrate Polymers, 2004. 56(1): p. 55-63. 29. Armstrong, S.E. and D.R. Bell, Measurement of high-molecular-weight hyaluronan in solid tissue using agarose gel electrophoresis. Analytical Biochemistry, 2002. 308(2): p. 255-264. 30. Calabro, A., et al., Fluorophore-assisted carbohydrate electrophoresis (FACE) of glycosaminoglycans. Osteoarthritis and Cartilage, 2001. 9: p. 16-22. 31. Volpi, N., Electrophoresis Separation of Glycosaminoglycans on Nitrocellulose Membranes. Analytical Biochemistry, 1996. 240(1): p. 114-118. 32. Dubin, P., Aqueous size-exclusion chromatography. 1988: Elsevier Publishing Company. 33. Karlsson, G. and R. Bergman, Determination of the distribution of molecular masses of sodium hyaluronate by high-performance anion-exchange chromatography. Journal of Chromatography A, 2003. 986(1): p. 67-72. 34. ; Available from: http://en.wikipedia.org/wiki/. 35. Douglas A. Skoog, F. James Holler, and Timothy A. Nieman, principles of instrumental analysis Vol. fifth edition. 1998: brooks/cole. 36. Baş, D. and İ.H. Boyacı, Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 2007. 78(3): p. 836-845. 37. Bezerra, M.A., et al., Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008. 76(5): p. 965-77. 38. Ferreira, S.L., et al., Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta, 2007. 597(2): p. 179-86. 39. Ferreira, S.L., et al., Doehlert matrix: a chemometric tool for analytical chemistry-review. Talanta, 2004. 63(4): p. 1061-7. 40. Tarley, C.R.T., et al., Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology. Microchemical Journal, 2009. 92(1): p. 58-67. 41. Torbjo¨rn Lundstedt a, Elisabeth Seifert a, Lisbeth Abramo b, Bernt Thelin c, and J.P.a. A° sa Nystro¨m a, Rolf Bergman a, Experimental design and optimization. 42. Altan, M., Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Materials & Design, 2010. 31(1): p. 599-604. 43. Khuri, A.I. and S. Mukhopadhyay, Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2010. 2(2): p. 128-149. 44. Collins, L.M., et al., Factorial experiments: efficient tools for evaluation of intervention components. Am J Prev Med, 2014. 47(4): p. 498-504. 45. Rouder, J.N., et al., Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 2012. 56(5): p. 356-374. 46. Youn, B.D. and K.K. Choi, A new response surface methodology for reliability-based design optimization. Computers & Structures, 2004. 82(2-3): p. 241-256. 47. Adnani, A., et al., Optimization of lipase-catalyzed synthesis of xylitol ester by Taguchi robust design method. Industrial Crops and Products, 2010. 31(2): p. 350-356. 48. Muhammad, N., et al., Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM. Journal of Mechanical Science and Technology, 2012. 26(8): p. 2365-2370. 49. W.H. Yang, Y.S.T., Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology 84 (1998) 122–129, 1997. 50. Shlens∗, J., A Tutorial on Principal Component Analysis. April 7, 2014. 51. Smith, L.I., A tutorial on Principal Components Analysis. February 26, 2002.
摘要: 近年來反應曲面法(RSM)和主成分分析(PCA)的方法已有廣泛應用在各領域的研究。本文的研究目標是將RSM用於系統優化,將PCA用於化學光譜中的分類和定量上。 論文的第一部分是用反應曲面法(RSM)優化層析系統的分析條件。其中會結合實驗設計方法,包括田口設計、中心複合設計和Doehlert的矩陣設計,利用實驗設計選擇重要因子並建構透明質酸(HA)在凝膠層析系統(GFC)的實驗條件。層析系統的條件會用不同的離子強度搭配各種酸鹼度的緩衝溶液去進行GFC的量測。再通過RSM和方差分析(ANOVA)對不同大小分子量的HA進行分析並獲得最佳的沖提條件,提供可靠相對分子量的測量方法。而在商業上HA標準品會經由多角度激光散射(MALLS)量測HA的絕對分子量。 之後,在該最佳實驗條件下用GFC量測商業上兩種HA的分子量。結果與多角度激光散射(MALLS)或小角度激光散射(SALLS)獲得的絕對分子量是一致的。最後,再經由GPC分析經由酸性的降解系統的商業高分子量HA的相對分子量。結果與基質輔助激光解吸電離-飛行時間質譜(MALDI-TOF MS)量測的絕對分子量是一致的。 論文的第二部分,主要研究方向是評估主成分分析(PCA)在物質上的分類與定量分析的可能性。其中會模擬出具有各種濃度和噪音水平的化合物光譜。再使用PCA方法來證明噪音水平和波峰強度對化合物的分類與定量分析的影響。實驗結果不僅表現出對各種化合物進行分類的特性,而且還展現出對單一物種進行定量分析的可能性。最後,實際將用表面增強拉曼光譜(SERS)量測水中細菌水的含量,並證明了PCA對光譜的定量分析是具有很大的潛力。
Response surface methodology (RSM) and principal components analysis (PCA) methods have been applied in research of different fields recently. The special aims of this thesis are the application of RSM for system optimization and PCA for material classification and quantification in chemical analysis. The first part of the thesis is the optimization of analysis conditions for chromatography via response surface methodology (RSM). Methods of Experimental design including Taguchi, Central composite and Doehlert matrix design are applied to select important factors and construct the various elution systems for gel filtration chromatography (GFC) analysis of hyaluronic acid (HA). The elution conditions for GFC measurements were performed with various ionic strength and buffer solution. The absolute molecular weights of commercial HA standards are obtained from Multi-Angle Laser Light Scattering (MALLS). Optimum elution condition was obtained by RSM with analysis of variance (ANOVA) to provide a reliable molecular-weight measurement for HA samples of different sizes. Subsequently, two commercial HA solutions were examined with GFC under this optimum condition. The results were in good agreement with the absolute molecular weights obtained from Multi Angle Laser Light Scattering (MALLS) or Small-Angle Laser Light Scattering (SALLS). In the final, the relative molecular weight of degraded hyaluronic acid (HA), prepared from the commercial high-molecular-weight HA via acidic digestion, was analyzed. The results were in good agreement with the absolute molecular weights obtained from Matrix Assisted Laser Desorption Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS).   In the second part of the thesis, the possibility of quantitative analysis of substances via principal components analysis (PCA) is evaluated. Spectra of target compounds are constructed with various concentrations and noise levels. PCA method is applied to demonstrate the effects of the noise levels and peak intensities for quantitative analysis. These results exhibited not only the possibility of classification for various compounds, but also the potential of quantitative analysis for one substance. Finally, surface-enhanced Raman spectroscopy (SERS) is applied for bacteriological water analysis and quantitative analysis of bacteria in water is demonstrated.
URI: http://hdl.handle.net/11455/97612
文章公開時間: 2021-08-31
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.