Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97621
標題: Part I新型雙-含氮雜環碳烯與醋酸鈀所形成之錯合物在催化反應上之應用:醛酮類的轉移氫化反應 Part II新型雙-含氮雜環碳烯與醋酸鈀所形成之錯合物在催化反應上之應用:醛類的氧化反應
Part I The Application of Novel Bis-N-heterocyclic Carbene–Pd Catalytic System for Transfer Hydrogenation Reaction of Aldehydes and Ketones Part II The Application of Novel Bis-N-heterocyclic Carbene–Pd Catalytic System for Oxidation Reaction of Aldehydes
作者: 游雅涵
Ya-Han Yu
關鍵字: 雙-含氮雜環碳烯
醋酸鈀
醛酮類
催化反應
轉移氫化反應
氧化反應
Bis-N-heterocyclic Carbene
Pd Catalytic System
Transfer Hydrogenation Reaction
Aldehydes
Ketones
Oxidation Reaction
引用: Part I 1. Kelly, G. J.; King, F.; Kett, M. Green Chem. 2002, 4, 392-399. 2. DiMascio, A.; Bernardo, D. L.; Greenblatt, D. J.; Marder, J. E. Arch. Gen. Psychiatry 1976, 33, 599-602. 3. Björnsdóttir, I.; Einarson, T. R.; Guðmundsson, L. S.; Einarsdóttir, R. A. Pharm. World Sci. 2007, 29, 577-583. 4. Banerji, A.; Long, A. A.; Camargo, C. A. Jr. Allergy Asthma Proc. 2007, 28, 418-426. 5. Dahlén, A.; Hilmersson, G. Chem. Eur. J. 2003, 9, 1123-1128. 6. Ageishi, K.; Endo, T.; Okawara, M. J. Polym. Sci., Part A: Polym. Chem. 1983, 21, 175-181. 7. Marcus Vinícius, N. d. S.; Alves Vasconcelos, T. R. Appl. Organometal. Chem. 2006, 20, 798-810. 8. Shi, L.; Liu, Y.; Liu, Q.; Wei, B.; Zhang, G. Green Chem. 2012, 14, 1372-1375. 9. Jia, Z.; Zhou, F.; Liu, M.; Li, X.; Chan, A. S.; Li, C. J. Angew. Chem. Int. Ed. 2013, 125, 11871-11874. 10. Mori, A.; Miyakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Sajiki, H. Org. Lett. 2006, 8, 3279-281. 11. Yang, Z.; Zhu, Z.; Luo, R.; Qiu, X.; Liu, J.-t.; Yang, J.-K.; Tang, W. Green Chem. 2017, 19, 3296-3301. 12. Wang, Z.; Huang, L.; Geng, L.; Chen, R.; Xing, W.; Wang, Y.; Huang, J. Catal. Lett. 2015, 145, 1008-1013. 13. Chatterjee, I.; Oestreich, M. Org. Lett. 2016, 18, 2463-2466. 14. Kilic, A.; Kaya, İ. H.; Ozaslan, I.; Aydemir, M.; Durap, F. Catal. Commun. 2018, 111, 42-46. 15. Gilkey, M. J.; Xu, B. ACS Catal. 2016, 6, 1420-1436. 16. Zhang, C.; Lu, J.; Li, M.; Wang, Y.; Zhang, Z.; Chen, H.; Wang, F. Green Chem. 2016, 18, 2435-24443. 17. Mandal, P. K.; McMurray, J. S. J. Org. Chem. 2007, 72, 6599-6601. 18. Matsunami, A.; Kayaki, Y. Tetrahedron Lett. 2018, 59, 504-513. 19. Sonnenberg, J. F.; Coombs, N.; Dube, P. A.; Morris, R. H. J. Am. Chem. Soc. 2012, 134, 5893-5899. 20. Zhang, P.; Li, X.; Qi, X.; Sun, H.; Fuhr, O.; Fenske, D. RSC Adv. 2018, 8, 14092-14099. 21. Chen, C.; Lu, C.; Zheng, Q.; Ni, S.; Zhang, M.; Chen, W. Beilstein J. Org. Chem. 2015, 11, 1786-1795. 22. Wang, X.; Wang, J.; Qi, F.; Hu, L.; Li, X.; Cao, X.; Gu, H. Chin. J. Catal. 2013, 34, 2084-2088. 23. Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621-6686. 24. Soni, R.; Jolley, K. E.; Clarkson, G. J.; Wills, M. Org. Lett. 2013, 15, 5110-5113. 25. Sinha, A.; Rahaman, S. M.; Sarkar, M.; Saha, B.; Daw, P.; Bera, J. K. Inorg. Chem. 2009, 48, 11114-11122. 26. Hauwert, P.; Maestri, G.; Sprengers, J. W.; Catellani, M.; Elsevier, C. J. Angew. Chem. Int. Ed. 2008, 58, 3223-3226. 27. Hauwert, P.; Boerleider, R.; Warsink, S.; Weigand, J. J.; Elsevier, C. J. J. Am. Chem. Soc. 2010, 132, 16900-16910. 28. Dub, P. A.; Gordon, J. C. ACS Catal. 2017, 7, 6635-6655. 29. Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem. Int. Ed. 2009, 48, 5094-5115. 30. Sun, C.; Potter, B.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 6534-6537. 31. Mieczynska, E.; Trzeciak, A. M. Molecules 2010, 15, 2166-2177. 32. Li, Y. X.; Xuan, Q. Q.; Liu, L.; Wang, D.; Chen, Y. J.; Li, C. J. J. Am. Chem. Soc. 2013, 135, 12536-12539. 33. Cinderella, A. P.; Vulovic, B.; Watson, D. A. J. Am. Chem. Soc. 2017, 139, 7741-7744. 34. Frost, C. G.; Howarth, J.; Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089-1122. 35. Tromp, M.; Sietsma, J. R. A.; van Bokhoven, J. A.; van Strijdonck, G. P. F.; van Haaren, R. J.; van der Eerden, A. M. J.; van Leeuwen, P. W. N. M.; Koningsberger, D. C. Chem. Commun. 2003, 128-129. 36. Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 4179-4181. 37. Han, Y.; Liu, J. Q.; Gou, X. X. Chem. Asian J. 2018. Manuscript submitted for publication. 38. Zhang, T.; Shi, M. Chem. Eur. J. 2008, 14, 3759-3764. 39. Zhang, T.; Shi, M.; Zhao, M. Tetrahedron 2008, 64, 2412-2417. 40. Wang, S.; Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu, L. Org. Lett. 2012, 14, 1966-1969. 41. Calò, V.; Nacci, A.; Lopez, L.; Mannarini, N. Tetrahedron Lett. 2000, 41, 8973-8976. 42. Tulloch, A. A. D.; Danopoulos, A. A.; Cafferkey, S. M.; Kleinhenz, S.; Hursthouse, M. B.; Tooze, R. P. Chem. Commun. 2000, 1258-1248. 43. Lin, Y.-R.; Chiu, C.-C.; Chiu, H.-T.; Lee, D.-S.; Lu, T.-J. Appl. Organomet. Chem. 2018, 32, e3896. 44. 邱建誠。2018。開發新型雙含氮雜環碳烯前驅物及其在催化反應上之應用。博士論文。台中:中興大學 化學研究所。 45. Taige, M. A.; Zeller, A.; Ahrens, S.; Goutal, S.; Herdtweck, E.; Strassner, T. J. Organomet. Chem. 2007, 692, 1519-1529. 46. Wang, H. M. J.; Lin, I. J. B. Organometallics 1998, 17, 972-975. 47. 邱惠慈。2017。銀碳烯錯合物促進鈀催化傅里德-克拉夫茨烷基化反應。碩士論文。台中:中興大學 化學研究所。 48. Organic Chemistry Info. https://www.chem.wisc.edu/areas/organic/index-chem.htm 49. Yang, Z.; Zhu, Z.; Luo, R.; Qiu, X.; Liu, J.-t.; Yang, J.-K.; Tang, W. Green Chem. 2017, 19, 3296-3301. 50. C, P. P.; Joseph, E.; A, A.; D, S. N.; Ibnusaud, I.; Raskatov, J.; Singaram, B. J. Org. Chem. 2018, 83, 1431-1440. 51. Uozumi, Y.; Hamasaka, G.; Tsuji, H. Synlett 2015, 26, 2037-2041. 52. Tan, X.; Zeng, W.; Zhang, X.; Chung, L. W.; Zhang, X. Chem. Commun. 2018, 54, 535-538. 53. Kotha, S. S.; Sharma, N.; Sekar, G. Adv. Synth. Catal. 2016, 358, 1694-1698. 54. Liu, J.-t.; Yang, S.; Tang, W.; Yang, Z.; Xu, J. Green Chem. 2018, 20, 2118-2124. 55. Corre, Y.; Rysak, V.; Trivelli, X.; Agbossou-Niedercorn, F.; Michon, C. Eur. J. Org. Chem. 2017, 32, 4820-4826. Part II 1. G. Fenyvesi, R. H. Poladi, A. Wehner, M. Joerger and R. Miller, US Pat. , 20070207939A1, 2007 to Dupont Tate & Lyle Bio Products Company. 2. Lu, L.; Zhang, W.; Nam, S.; Horne, D. A.; Jove, R.; Carter, R. G. J. Org. Chem. 2013, 78, 2213-2258. 3. Matsumura, D.; Toda, T.; Hayamizu, T.; Sawamura, K.; Takao, K.-i.; Tadano, K.-i. Tetrahedron Lett. 2009, 50, 3356-3358. 4. Mahmood, A.; Robinson, G. E.; Powell, L. Org. Proc. Res. Dev. 1999, 3, 363-364. 5. Thottathil, J. K.; Moniot, J. L.; Mueller, R. H.; Wong, M. K. Y.; Kissick, T. P. The J. Org. Chem. 1986, 51, 3140-3143. 6. Ray, R.; Jana, R. D.; Bhadra, M.; Maiti, D.; Lahiri, G. K. Chem. Eur. J. 2014, 20, 15618-15624. 7. Gayakwad, E. M.; Patil, V. V.; Shankarling, G. S. New J. Chem. 2017, 41, 2695-2701. 8. Liu, M.; Li, C. J. Angew. Chem. Int. Ed. 2016, 55, 10806-10810. 9. Tanaka, S.; Kon, Y.; Uesaka, Y.; Morioka, R.; Tamura, M.; Sato, K. Chem. Lett. 2016, 45, 188-190. 10. Yu, H.; Ru, S.; Dai, G.; Zhai, Y.; Lin, H.; Han, S.; Wei, Y. Angew. Chem. Int. Ed. 2017, 56, 3867-3871. 11. Yoshida, M.; Katagiri, Y.; Zhu, W. B.; Shishido, K. Org. Biomol. Chem. 2009, 7, 4062-4066. 12. Gu, L.; Zhang, Y. J. Am. Chem. Soc. 2010, 132, 914-915. 13. Hong, J.; Wang, G.; Huo, L.; Zheng, C. Chin. J. Chem. 2017, 35, 1761-1767. 14. Yann B.-B.; Corinne G.; Grégory D. Chem. Eur. J. 2017, 23, 10043-10058. 15. Fang, W. Y.; Leng, J.; Qin, H. L. Chem. Asian. J. 2017, 12, 2323-2331. 16. Caille, J.-C.; Bessmernykh, A.; Berger, P.; Mignonac, S. Synthesis 2006, 18, 3106-3110. 17. Wang, X.; Chen, R. X.; Wei, Z. F.; Zhang, C. Y.; Tu, H. Y.; Zhang, A. D. J. Org. Chem. 2016, 81, 238-249. 18. Zheng, R.; Zhou, Q.; Gu, H.; Jiang, H.; Wu, J.; Jin, Z.; Han, D.; Dai, G.; Chen, R. Tetrahedron Lett. 2014, 55, 5671-5675. 19. Du, Q.; Zhang, W.; Ma, H.; Zheng, J.; Zhou, B.; Li, Y. Tetrahedron 2012, 68, 3577-3584. 20. Jiang, X.; Zhai, Y.; Chen, J.; Han, Y.; Yang, Z.; Ma, S. Chin. J. Chem. 2018, 36, 15-19. 21. Tang, L.; Guo, X.; Li, Y.; Zhang, S.; Zha, Z.; Wang, Z. Chem. Commun. 2013, 49, 5213-5215. 22. Gentili, P.; Pedetti, S. Chem. Commun. 2012, 48, 5358-5360.
摘要: 本研究中使用之雙含氮雜環鹽類 27 製備簡易,具有在空氣與水氣中極為穩定的特性。而此特性使其能在不需惰性氣體保護下,即可在空氣及水相中有效地與醋酸鈀形成錯合物,進而催化反應。 本研究以4當量的甲酸鉀鹽作為還原劑來源,當使用 5.0 mol% 之雙含氮雜環鹽類 27 與 5.0 mol% 的醋酸鈀原位生成鈀金屬碳烯錯合物 (NHC–Pd),以乙醇或二甲基甲醯胺為溶劑時,在 80 °C 下,可有效地將醛、酮進行轉移氫化反應,還原成對應的一級醇或二級醇,並得到良好的產率。此外,將甲酸鉀鹽的當量數下降至 1.2 當量時,也能有效地對醛類化合物進行酯化反應,並得到中等的產率。 而若使用水為溶劑時,則能在催化劑添加量更低的情況 (1.0 mol%),則可有效地將醛類化合物進行氧化反應,並得到相對應的羧酸,並得到良好的產率。值得注意的是,此催化系統在極低的添加量下 (0.001 mol%) 仍能使對-三氟甲基苯甲醛有效氧化為對-三氟甲基苯甲酸,其轉換數 (每莫耳催化劑轉化的反應物莫耳數。turnover number, TON) 可達 34000,且其轉換頻率 (每小時每莫耳催化劑轉化的反應物莫耳數。turnover number frequency, TOF) 也可達1417 h-1。 本研究利用雙含氮雜環鹽類 27 與醋酸鈀所形成之錯合物,可成功地在溫和條件下催化醛酮類化合物的還原與氧化反應。當使用高極性的有機溶劑,如二甲基甲醯或乙醇,能使醛類進行還原反應;而使用水作為溶劑時,可使醛類進行氧化反應。此催化系統可輕易地透過溶劑的改變,控制反應的類型與所形成的產物。 此外,利用此催化系統催化反應時,可完全在空氣中操作。且當應用於氧化反應時能有效地改善催化劑添加量較大、反應需在惰性氣體下操作且反應時間長等缺點。並且能催化具有各種的官能基的醛或酮並可以得到其相應的醇類或羧酸。如缺電子和烯烴,鹵素,甲氧基,氰基,酮類,均可達到中等至良好的產率,顯示其對於不同官能基皆有很好的耐受性,說明其卓越的化學選擇性。
The novel bis-N-heterocyclic carbene salt 27 used in this study was easy to prepare. The bis-NHC–Pd catalytic system derived from the salt 27 with Pd(OAc)2 in situ can catalyze the reaction in the air and the aqueous phase. In this study, the transfer hydrogenation of aldehydes and ketones was performed in the presence of 5.0 mol% of salt 27 and Pd(OAc)2 when potassium formate (4.0 equiv.) was used as the hydrogen source and EtOH or DMF as a solvent at 80 °C. The corresponding primary or secondary alcohols were obtained in good yields. In addition, the aldehydes reacted with alcohols to obtain the corresponding esters when potassium formate (1.2 equiv.) was used in moderate yield. However, the oxidation of aldehydes raised to form the corresponding carboxylic acid in the presence of 1.0 mol% bis-NHC–Pd catalytic system in good yields. It is worth noting that the oxidation of 4-(trifluoromethyl)-benzaldehyde still gave in good yield when the loading of the catalytic system was reduced to 0.001 mol% from 1.0 mol%. The turnover number (TON) is up to 34000 and the turnover frequency (TOF) is 1417 h-1. In this study, the reduction and oxidation of aldehydes can be successfully catalyzed by the bis-NHC–Pd catalytic system at 80 °C. When a polar organic solvent such as dimethylformamide or ethanol is used, the aldehydes can be reduced to alcohols. The aldehydes can be oxided to carboxylic acid when water is used as the solvent. In addition, these catalytic reactions are completely operated in air. The aldehydes or ketones containing various functional groups, such as olefins, halogen, methoxy, cyano, ketones, are tolerated in the presence of bis-NHC–Pd catalytic system. The oxidations of aldehydes occur at mild temperature and can be carried out with 0.01 mol% loading of the bis-NHC–Pd catalytic system, even on a gram scale. The generality of these methodologies gives it operational simplicity and the potential for use on an industrial scale.
URI: http://hdl.handle.net/11455/97621
文章公開時間: 2021-08-21
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.