Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYung-Chieh Wangen_US
dc.contributor.authorChun-Chen Laien_US
dc.identifier.citation1.Aksoy, H., Unal, N. E., Cokgor, S., Gedikli, A., Yoon, J., Koca, K., . . . Eris, E. (2012). A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume. Catena, 98, 63-72. doi:10.1016/j.catena.2012.06.009 2.ASTM International. (2017). ASTM D4318-17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Retrieved from 3.ASTM International. (2017). ASTM D7928-17 Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. Retrieved from 4.Berger, C., Schulze, M., Rieke-Zapp, D., & Schlunegger, F. (2010). Rill development and soil erosion: a laboratory study of slope and rainfall intensity. Earth Surface Processes and Landforms, 35(12), 1456-1467. doi:10.1002/esp.1989 5.Chen, X. Y., Zha, Y., Mi, H. X., & Mo, B. (2016). Estimating rill erosion process from eroded morphology in flume experiments by volume replacement method. Catena, 136, 135-140. doi:10.1016/j.catena.2015.01.013 6.De Lima, J. L. M. P., Tavares, P., Singh, V. P., & de Lima, M. I. P. (2009). Investigating the nonlinear response of soil loss to storm direction using a circular soil flume. Geoderma, 152(1), 9-15. doi: 7.De Roo, A. P. J., Wesseling, C. G., & Ritsema, C. J. (1996). LISEM: A SINGLE-EVENT PHYSICALLY BASED HYDROLOGICAL AND SOIL EROSION MODEL FOR DRAINAGE BASINS. I: THEORY, INPUT AND OUTPUT. Hydrological Processes, 10(8), 1107-1117. doi:10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4 8.Eijkelkamp Agrisearch Equipment.(2014) Rainfalll sinmulator operating instructions. 9.Forrester, J. W. (1994). System dynamics, systems thinking, and soft OR. System Dynamics Review, 10(2-3), 245-256. doi:10.1002/sdr.4260100211 10.Guo, D., & Yu, B. (2016). Implementation of the Preissmann scheme to solve the Hairsine-Rose erosion equations: Verification and evaluation. Journal of Hydrology, 541, 988-1002. doi:10.1016/j.jhydrol.2016.08.011 11.Hairsine, P. B., & Rose, C. W. (1991). Rainfall Detachment and Deposition: Sediment Transport in the Absence of Flow-Driven Processes (Vol. 55). 12.Hairsine, P. B., & Rose, C. W. (1992). Modeling water erosion due to overland flow using physical principles: 1. Sheet flow. Water Resources Research, 28(1), 237-243. doi:10.1029/91wr02380 13.Hong, Y., Bonhomme, C., Le, M.-H., & Chebbo, G. (2016). A new approach of monitoring and physically-based modelling to investigate urban wash-off process on a road catchment near Paris. Water Research, 102, 96-108. doi:10.1016/j.watres.2016.06.027 14.IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015.International soil classification system for naming soils and creating legends for soil maps.World Soil Resources Reports No. 106. FAO, Rome. 15.J., K. N. (2007). Erodibility of soil and organic matter: independence of organic matter resistance to interrill erosion. Earth Surface Processes and Landforms, 32(5), 794-802. doi:doi:10.1002/esp.1486 16.J., T. v. M. H., J.‐Y., P., A., B. D., F., T. M., C., S. G., T., W. M., & B., P. M. (2008). Influence of sediment settling velocity on mechanistic soil erosion modeling. Water Resources Research, 44(6). doi:doi:10.1029/2007WR006361 17.Jomaa, S., Barry, D. A., Brovelli, A., Sander, G. C., Parlange, J. Y., Heng, B. C. P., & Tromp-van Meerveld, H. J. (2010). Effect of raindrop splash and transversal width on soil erosion: Laboratory flume experiments and analysis with the Hairsine–Rose model. Journal of Hydrology, 395(1-2), 117-132. doi:10.1016/j.jhydrol.2010.10.021 18.Liu, G., Zhang, Q., & Yang, M. (2011). Using 7Be to Trace Temporal Variation of Interrill and Rill Erosion on Slopes. Procedia Environmental Sciences, 11, 1220-1226. doi: 19.Lorenzo, B., Dino, T., Jean, P., & Salvador, S. P. (2001). Effects of water quality on infiltration, runoff and interrill erosion processes during simulated rainfall. Earth Surface Processes and Landforms, 26(3), 329-342. doi:doi:10.1002/1096-9837(200103)26:3<329::AID-ESP177>3.0.CO;2-Y 20.Lynch, B., & Lommatsch, G. (2011). Modeling the velocity of a raindrop. 21.Mahmoodabadi, M., Ghadiri, H., Rose, C., Yu, B., Rafahi, H., & Rouhipour, H. (2014). Evaluation of GUEST and WEPP with a new approach for the determination of sediment transport capacity. Journal of Hydrology, 513, 413-421. doi:10.1016/j.jhydrol.2014.03.060 22.Mahmoodabadi, M., Ghadiri, H., Yu, B., & Rose, C. (2014). Morpho-dynamic quantification of flow-driven rill erosion parameters based on physical principles. Journal of Hydrology, 514, 328-336. doi:10.1016/j.jhydrol.2014.04.041 23.Martin, C., Pohl, M., Alewell, C., Körner, C., & Rixen, C. (2010). Interrill erosion at disturbed alpine sites: Effects of plant functional diversity and vegetation cover. Basic and Applied Ecology, 11(7), 619-626. doi: 24.Misra, R. K., & Rose, C. W. (1996). Application and sensitivity analysis of process-based erosion model GUEST. European Journal of Soil Science, 47(4), 593-604. doi:10.1111/j.1365-2389.1996.tb01858.x 25.Morgan, R. P. C., Morgan, D. D. V., & Finney, H. J. (1984). A predictive model for the assessment of soil erosion risk. Journal of Agricultural Engineering Research, 30, 245-253. doi: 26.Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., . . . Styczen, M. E. (1998). The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527-544. doi:<527::AID-ESP868>3.0.CO;2-5 27.Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the Asabe, 50(3), 885-900. 28.Nciizah, A. D., & Wakindiki, I. I. C. (2014). Rainfall pattern effects on crusting, infiltration and erodibility in some South African soils with various texture and mineralogy. Water SA, 40(1). doi:10.4314/wsa.v40i1.7 29.Nearing, M. A., Foster, G. R., Lane, L. J., & Finkner, S. C. (1989). A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology. 32(5). doi: 30.Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. Soil and Water Assessment Tool Theoretical Documentation Version 2009. 31.Ni, Wei-Jay & Capart, Hervé. (2006). Groundwater drainage and recharge by networks of irregular channels. Journal of Geophysical Research. 111. doi:10.1029/2005JF000410. 32.Nolan, S. C., Vliet, L. J. P. v., Goddard, T. W., & Flesch, T. K. (1997). Estimating storm erosion with a rainfall simulator. Canadian Journal of Soil Science, 77(4), 669-676. doi:10.4141/S96-079 33.Paige, G. B., Stone, J. J., Smith, J. R., & Kennedy, J. R. (2004). The Walnut Gulch Rainfall Simulator: A Computer-Controlled Variable Intensity Rainfall Simulator. Applied Engineering in Agriculture, 20(1), 25-31. doi:10.13031/2013.15691 34.Pan, C., & Shangguan, Z. (2006). Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, 331(1-2), 178-185. doi:10.1016/j.jhydrol.2006.05.011 35.Parsons, A. J., & Stone, P. M. (2006). Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. Catena, 67(1), 68-78. doi:10.1016/j.catena.2006.03.002 36.Pedroso de Lima, J., Singh, V., Isidoro, J., & De Lima, I. (2011). Incorporating the Effect of Moving Storms into Hillslope Hydrology: Results from a Multiple-Slope Soil Flume. 37.Proffitt, A., & Rose, C. (1991). Soil erosion processes. I. The relative importance of rainfall detachment and dunoff entrainment. Soil Research, 29(5), 671-683. doi: 38.Proffitt, A. P. B., & Rose, C. W. (1991). Soil erosion processes. I. The relative importance of rainfall detachment and dunoff entrainment. Australian Journal of Soil Research, 29(5). doi:10.1071/sr9910671 39.Römkens, M. J. M., Helming, K., & Prasad, S. N. (2002). Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 46(2-3), 103-123. doi:10.1016/s0341-8162(01)00161-8 40.Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture Agricultural Handbook. 41.Rose, C. W., Coughlan, K. J., & Fentie, B. (1998). Griffith University Erosion System Template (GUEST). In J. Boardman & D. Favis-Mortlock (Eds.), Modelling Soil Erosion by Water (pp. 399-412). Berlin, Heidelberg: Springer Berlin Heidelberg. 42.Salles, C., Poesen, J., & Sempere-Torres, D. (2002). Kinetic energy of rain and its functional relationship with intensity. Journal of Hydrology, 257(1), 256-270. doi: 43.Sander, G. C., Hairsine, P. B., Rose, C. W., Cassidy, D., Parlange, J. Y., Hogarth, W. L., & Lisle, I. G. (1996). Unsteady soil erosion model, analytical solutions and comparison with experimental results. Journal of Hydrology, 178(1-4), 351-367. doi:Doi 10.1016/0022-1694(95)02810-2 44.Sepaskhah, A. R., & Shahabizad, V. (2010). Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator. Biosystems Engineering, 106(4), 513-520. doi: 45.Shen, H., Zheng, F., Wen, L., Han, Y., & Hu, W. (2016). Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil and Tillage Research, 155, 429-436. doi:10.1016/j.still.2015.09.011 46.Shen, H., Zheng, F., Wen, L., Lu, J., & Jiang, Y. (2015). An experimental study of rill erosion and morphology. Geomorphology, 231, 193-201. doi:10.1016/j.geomorph.2014.11.029 47.United States. Natural Resources Conservation Service. Soil Science Division. (2017). Soil survey manual. Washington, D.C.. United States Department of Agriculture. 48.Vinci, A., Brigante, R., Todisco, F., Mannocchi, F., & Radicioni, F. (2015). Measuring rill erosion by laser scanning. Catena, 124, 97-108. doi:10.1016/j.catena.2014.09.003 49.Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: guide for selection of practices for soil and water conservation. Washington, D.C.: Agricultural Research Service, U.S. Dept of Agriculture in cooperation with Purdue Agricultural Experiment Station. 50.Yu, B. (2003). A Unified Framework For Water Erosion And Deposition Equations. Soil Science Society of America Journal, 67(1). doi:10.2136/sssaj2003.2510 51.Yu, B., Guo, D., & Rose, C. W. (2017). Dynamic flow-driven erosion – An improved approximate solution. Journal of Hydrology, 552, 544-553. doi:10.1016/j.jhydrol.2017.07.019 52.Zhang, P., Tang, H., Yao, W., Zhang, N., & Xizhi, L. V. (2016). Experimental investigation of morphological characteristics of rill evolution on loess slope. Catena, 137, 536-544. doi:10.1016/j.catena.2015.10.025 53.Zhang, Q., Dong, Y., Li, F., Zhang, A., & Lei, T. (2014). Quantifying detachment rate of eroding rill or ephemeral gully for WEPP with flume experiments. Journal of Hydrology, 519, 2012-2019. doi:10.1016/j.jhydrol.2014.09.040 54.王宏、蔡強國與朱遠達(2003)。應用EUROSEM模型對三峽庫區陡坡地水力侵蝕的模擬研究。地理研究,22(5),579-589。 55.代肖、張海濤、周大邁與張愛軍(2012)。人工類比降雨裝置及其應用介紹。中國水土保持,12,52-54。 56.吳定芳(2002)。應用動態資料增強系統動力學模型模擬技術之探討 (碩士論文)。國立中山大學。高雄市。 57.沈海鷗、鄭粉莉、溫磊磊、薑義亮與盧嘉(2015)。降雨強度和坡度對細溝形態特徵的綜合影響。農業機械學報。 58.林俐玲與林文英(2008)。土壤流失推估模式之應用與探討。水土保持學報,40,03。 59.林俐玲與陳品岡(2010)。修正版通用土壤流失公式(RUSLE)之簡介。水保技術,5(4),251-257。 60.林俐玲與董小萍(1996)。土壤物理學實習手冊。國立中興大學水土保持學系。 61.倪瑋傑(2005)。地形持續發展的溝渠與地下水湧出及補注(碩士論文)。國立臺灣大學。台北市。 62.侯耀棠(2013)。阿公店水庫延壽對策之研究。成功大學。取自。 63.財團法人成大研究發展基金會(2016)。105年度阿公店水庫空庫防淤泥砂觀測 64.覃超、鄭粉莉、徐錫蒙與何煦(2016)。基於立體攝影技術的細溝與細溝水流參數測量。農業機械學報,47(11),150-156。 65.楊啟見、林俊全與鄭遠昌. (2016)。泥岩邊坡紋溝發育過程與機制。地理學報,81,27-42。doi:10.6161/jgs.2016.81.02。 66.穆興民、李朋飛、高鵬、趙廣舉與孫文義(2016)。土壤侵蝕模型在黃土高原的應用述評。人民黃河,38(10),100-110。 67.穆文彬、李義豪、李傳哲、劉佳、程雙虎與趙娜娜(2016)。不同坡度和前期土壤含水率條件下裸地降雨產流試驗研究。南水北調與水利科技,14(06),6-11。zh_TW
dc.description.abstract台灣南部的青灰泥岩地區,由於其土壤特性質地鬆軟容易遭受降雨和逕流沖蝕造成崩塌,因此導致水庫淤積。本研究所使用的土壤為從阿公店水庫集水區收集的青灰泥岩沉積土,藉由採回來的土樣對其進行降雨模擬實驗並搭配雷射掃描紀錄其地形變化。目的為研究土壤沖蝕的過程,並根據實驗所收集到的資料配合前人的文獻資料進行模型的建置。研究可以分為兩個部分其中第一部分為進行實驗室的模擬降雨實驗,降雨強度固定,坡度分別為30、25、20、15、10、5度,每個坡度分別做兩重複,降雨時間為30分鐘,每五分鐘收集一次出流量並且進行雷射掃描,實驗結束後比較雷射得出之土壤沖蝕量比其實際收集之土壤沖蝕量來的大,整體都是高估的情況,但是趨勢是擬合的,都是隨著坡度的漸增而沖蝕量上升。 第二部分則是根據系統動力學建置土壤沖蝕的模型,主要是參考Hairsine-Rose Model的物理方程式,以系統動力學軟體Stella建立模型,並使用實驗的資料進行率定和驗證,若是實驗沒有的數據則參考前人的文獻,將模型所得出的土壤沖蝕量與實驗收集的土壤沖蝕量進行比較,可以發現在高坡度下擬合的結果較為理想,至於低坡度時則會有較大的偏差發生,可能造成的原因為模型中並沒有考慮到入滲所產生的影響。再對調整的參數J(土壤基質抗徑流對土壤產生捲起之能力)、F(超過門檻值之河川功率實際對土壤造成影響的比率)、ThresholdSP(河川功率造成土壤沖蝕的門檻值)、OriSoilDetach(原始表土之離散能力)、DepoLayerDetach(沉積層之離散能力)進行敏感度分析,可以得到各坡度之主要影響土壤沖蝕量的參數。 研究成果有(1)將DEM資料的土壤沖蝕體積轉換成土壤沖蝕量的量化公式。(2)得出土壤沖蝕量與降雨時間和坡度之間的關係式。(3)建置出可以預估土壤沖蝕量的系統動力學模型之初步成果。zh_TW
dc.description.abstractThe mudstone area in southern Taiwan is vulnerable to rainfall and runoff erosion due to its soft soil texture, which leads to reservoir siltation. The soil used in this study is the mudstone sedimentary soil collected from the watershed of the Agongdian Reservoir, and used the soil to conduct the rainfall simulation experiment, and recorded. the topography changes by laser scanning. The purpose is to study the process of soil erosion, and to build the model according to the data collected by the experiment and the previous literature. The research has two parts, the first part is the laboratory soil erosion experiment with a rainfall simulator. The soil was filled the erosion flume which is 0.75m*0.25m*0.15m.The soil erosion experiment were conducted under same rainfall intensity but different slope gradients. There are 6 slope gradients(30、25、20、15、10、5), experiment trails of each slope were repeated two times and the rainfall duration is thirty minutes. During simulation experiment, outflow of the flume was collected at intervals of 5 minutes. Meanwhile, the laser scanning technique was applied at every 5 minutes when rainfall was stopped temperately. The result of this part was found that the sediment yield by estimated by laser scanned topography is large than the collected sediment yields. However, the trend is the same, both the estimated and collected sediment yields increased as the slope increased. The Second part is construction of a process-based soil erosion model based on System Dynamics method using STELLA, a system dynamic software. The model was based on the physical equations proposed in Hairsine-Rose Model, and used the rainfall simulator experiment data for model calibration and verification. The results of comparison between the sediment yields estimated by the model and measured from the experiment show that the deviations in steep slope trials were lower than that of the mild slope trials. The deviations may be attributed to that the model didn't consider the influence of infiltration. From sensitivity analysis of parameters, we investigated the influential parameters among J(the specific energy of entrainment)、F(the fraction of excess stream power effective in entrainment and re-entrainment)、ThresholdSP(threshold stream power)、OriSoilDetach(detachability of the original soil)、DepoLayerDetach(detachability of the deposited layer) of soil erosion prediction. The research results are (1) the quantitative formula for converting the soil erosion volume of DEM data into soil erosion weight; (2) the relationship between soil erosion amount and rainfall duration and slope; (3) the preliminary results of a system dynamics model that can predict the amount of soil erosion is constructed.en_US
dc.description.tableofcontents第一章 前言1 1.1. 研究動機1 1.2. 研究目的2 第二章 文獻回顧3 2.1. 土壤沖蝕實驗3 2.2. 紋溝發展與型態探討11 2.3. 土壤沖蝕模型15 第三章 研究方法19 3.1. 研究流程19 3.2. 研究材料20 3.2.1. 土壤液限20 3.2.1. 土壤塑限22 3.2.1. 土壤粒徑分布22 3.2.2. 土壤含水量23 3.3. 沖蝕實驗23 3.3.1. 實驗設備23 3.3.2. 實驗步驟28 3.4. 雷射地形掃瞄29 3.4.1. 雷射基礎理論介紹29 3.4.2. 掃瞄率定與實作步驟31 3.4.3. 雷射資料分析32 3.5. 系統動力學模型33 3.5.1. 系統動力學理論33 3.5.2. 系統動力學模型軟體-STELLA34 3.5.3. 坡地沖蝕模型36 3.5.4. 系統動力學模型建構40 第四章 結果與討論47 4.1. 實驗數據整理與討論47 4.1.1. 土壤基本實驗47 4.1.2. 臨前含水量50 4.1.3. 直接收集之入滲量與沖蝕量53 4.1.4. 雷射掃描之地形變化敘述55 4.1.5. 雷射掃描之土壤沖蝕體積與重量換算57 4.1.6. 坡度與土壤沖蝕量之關係62 4.2. 系統動力學模型成果分析63 4.2.1. 三種粒徑之參數率定63 4.2.2. 三種粒徑與單一粒徑模型之差異74 4.2.3. 敏感度分析77 第五章 結論與建議78 5.1. 結論79 5.2. 建議81 參考文獻82 附錄88zh_TW
dc.subjectHairsine-Rose Modelzh_TW
dc.subjectSoil erosionen_US
dc.subjectLaser scanningen_US
dc.subjectHairsine-Rose Modelen_US
dc.subjectSystem dymanicen_US
dc.subjectRainfall simulationen_US
dc.titleAssessment of soil loss in rainfall simulator experiments using Hairsine-Rose modelen_US
dc.typethesis and dissertationen_US
Appears in Collections:水土保持學系


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.