Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97651
標題: 挺水濱岸植被對土壤沖蝕特性影響之試驗研究
Experimental study on emergent riparian vegetation effects on soil erosion characteristic
作者: 陳登詠
Deng-Yong Chen
關鍵字: 植物根系
雷射掃描地形
剛性挺水植物
渠槽試驗
洗根分析
Root system
Laser scanned topography
Rigid emergent plant
Flume experiment
Root washing analysis
引用: 參考文獻 中文部分 1. 林俐玲、董小萍 (1996),土壤物理學實習手冊,國立中興大學水土保持學系。 2. 林信輝(2007)「水生植物手冊」,行政院農業委員會水土保持局 3. 行政院農業委員會水土保持局(2018),「集水區坡地土砂沖蝕動態評估研究」成果報告 4. 王忖、王超 (2010),含挺水植物和沉水植物水流紊動特性,水科學進展,第21卷,第6期,第816-822頁。 5. 徐少君(2016)「三峽庫區幾種耐水淹植物根系力學特徵與土壤抗剪強度」,湖北農業科學,第18期 第4664-4670頁 6. 徐少君、曾波(2008)「三峽庫區5種耐水淹植物根系增強土壤抗侵蝕效能研究」,水土保持學報,第22卷,第6期,第13-18頁 7. 陳湘媛(2010)。水生植物抗流機制之研究(博士論文)。取自華藝線上圖書館 8. 趙連權,白曉華,李豐超,關志成,侯秀麗(2012)天然挺水植物明渠三维紊流特性研究,水電能源科學,第30卷第3期,第90-92頁 9. 萬鑫森 譯 (1987),基礎土壤物理學,初版二印,國立編譯館主編,茂昌圖書有限公司發行。 10. 盧立霞、曾波(2006)「三峽庫區嘉陵江岸生優勢鬚根系植物根系 對土壤抗冲性的增強效應研究」,西南師範大學學報(自然科學版) ,第31卷,第3期,第157~161頁 11. 經濟部水利署水利規劃試驗所https://www.wrap.gov.tw/Mobile/paper_1.aspx?id=aceafba9-8633-4a5f-8cbe-0606b0778fde 西文部分 1. Bywater-Reyes, S., Wilcox, A. C., Stella, J. C., & Lightbody, A. F. (2015). ' Flow and scour constraints on uprooting of pioneer woody seedlings. ' Water Resources Research, 51(11), 9190-9206. 2. Chen, S. C. , Chan, H. C. , Li, Y. H. (2012), 'Observations on flow and local scour around submerged flexible vegetation' Advances in Water Resources 43,28-37 3. Chen, S. C. , Kuo, Y. M. , Li, Y. H. (2011), 'Flow characteristics within different configurations of submerged flexible vegetation' Advances in Water Resources 398(1), 124-134 4. Hung, C. Y. ,Capart, H. (2013), ' Rotating laser scan method to measure the transient free-surface topography of small-scale debris flows ' Experiments in Fluids Vol.54(9), 1-17 5. Jordanova,A. A. and James. C. S. (2013) 'Experimental Study of Bed Load Transport through Emergent Vegetation', Hydrulic Engineering 474-478 6. Kima, H. S. , Nabi, M. , Kimurac, I. , Shimizuc,Y. (2015) ' Computation modeling of flow and morphodynamics though rigid-emergent vegetation ' Advances in Water Resources ,84(23), 64-86 7. Lee, J. K., Roig, L. C., Jenter, H. L., & Visser, H. M. (2004). 'Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades. ' Ecological Engineering, 22(4-5), 237-248 8. Liffen, T. , Gurnell,A. M. , O'Hare,M. T. , Pollen-Bankhead,N. , Simon,A. (2011) ' Biomechanical properties of the emergent aquatic macrophyte Sparganium erectum: Implications for fine sediment retention in low energy rivers ' Ecological Engineering 37, 1925–1931 9. Lee, J. K. , Roig ,L. C. , Jenter,H. L. , Visser ,H. M. (2004) ' Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades', Ecological Engineering 22, 237–248 10. RootReader2D Users Guide Version 4.3.2 11. Tang, H. W. ,Wang, H. ,Liang, D. F. ,Lv, S. Q. , Yana, L. ' Incipient motion of sediment in the presence of emergent rigid vegetation' Journal of Hydro-environment Research 7(3),202-208 12. Yagci, O., Celik, M. F., Kitsikoudis, V., Ozgur Kirca, V. S., Hodoglu, C., Valyrakis, M., . . . Kaya, S. (2016). 'Scour patterns around isolated vegetation elements.' Advances in Water Resources 97, 251-265.
摘要: 因應注重生態意識崛起,面對溪流與河岸濱水帶之整治,多希望能就地取材,採用現地材料與原生植物做整治材料,以恢復原有的生態環境。所以了解濱水帶挺水植物對於土壤沖蝕之影響是非常重要的。本研究選用四種常見之剛性挺水植物規則排列種植於渠槽內做沖蝕實驗,每一株植物於渠道內以較低流量水流進行一個月的預種植,俾使植物的根系順利扎根固定土壤,之後每兩周逐步調高流量,使用的渠槽坡度為2%,流量依序由20 L/min調升到100、150、200 L/min;單場沖蝕實驗之總延時為三個月。實驗過程中,以雷射切葉掃描和影像分析方法獲得水流流經剛性挺水植物造成的地形變化及沖蝕量,並與無種植植物的裸露區(實驗一)以及擬真植物之壓克力柱區(實驗二)於相同水流條件下進行比較,並於每周紀錄植物的生長情形。以日常記錄之植物參數與兩周一次的雷射掃描地形以及實驗後洗根測量分析做後續之分析與研究。 實驗一進行裸露土壤區與植物區之沖蝕試驗,結果指出裸露區總沖蝕量大於植物區10.6%。裸露區主要沖蝕來自流量從150L/min增加至200L/min時,佔整個實驗裸露區總沖蝕量的70.1%。植物區主要沖蝕來自流量150L/min時,沖蝕主要集中在最上游的香蒲及最下游的蘆葦,原因是由於其地下根莖沖蝕露出導致周圍刷深較為劇烈。實驗二進行仿植物壓克力柱區與植物區之沖蝕試驗,結果指出仿植物壓克力柱區總沖蝕量約為植物區之2.5倍,其沖蝕量主要發生在流量由100 L/min增加至150 L/min。結果顯示植栽槽不管是種植剛性挺水植物、擬真植物壓克力柱或是完全裸露的狀態,各植栽槽其最終沖蝕面積與總沖蝕體積皆呈正比,斜率上壓克力柱>真實植物>裸露地,代表平均沖蝕深度:壓克力柱>真實植物>裸露地。 比較兩場沖蝕實驗結果,實驗一中單株擁有最大根長的植物是單葉鹹草,蘆葦次之,試驗二中單株擁有最大根長為蘆葦,單葉鹹草次之,代表此兩種植物根系覆蓋地表程度最高,若不考慮生存率偏低的水丁香,抗沖蝕能力表現最佳者亦為單葉鹹草與蘆葦,此兩種植物之匍匐莖繁殖快速,根系拓展範圍廣布整個植栽槽,因此固土效果佳,適合用於濱水區固土護坡,以防止土砂向下游運移。
Today, the focus on ecological awareness, measurements of stream and riverside waterfront remediation hope to utilize take local materials and native plants as a remediation material to restore the ecological environment. Therefore, it is very important to study the influence of the emergent macrophytes growing in riverside areas on the soil erosion characteristics. In this study, four common rigid emergent plants were arranged in the flume in the scouring experiments. Each plant was pre-planted in the flume with a lower flow rate for one month for root system development. Afterwards, the flow rate was gradually increased for every two weeks. The slope of the channel used is 2% and the flow rate was adjusted from 20 L/min to 100, 150, and 200 L/min. Total time period of one set of experiments lasted for three months. During the experiments, the laser scanning technique and image analyzing method were applied to obtain the topographic changes and erosion caused by the water flow through the vegetated area, as well as the bare soil area (experiment I) and artificial vegetation (acrylic column) area (experiment II). The growth of plants were also recorded on a weekly basis for further discussion. Data analysis and discussion were carried out based on the daily recorded plant parameters, two-week laser scanning topographies, and post-experiment root measurements. In experiment I, the total erosion amount in bare soil area was 10.6% higher than that in the vegetated area. Obvious erosion was observed as the flow rate increased from 150L/min to 200L/min; the erosion during this period accounted for 70.1% of the total erosion volume of the bare soil area. When the main area of the vegetated area was washed from 150L/min, scouring was mainly concentrated in the most upstream cattail and the most downstream reed, because the underground stems were exposed by soil erosion and lead to more serious erosion around the stems. In experiment II, the total erosion amount of the artificial plant area was about 2.5 times of that in the vegetated area. The major amount of erosion occurred when the flow rate increased from 100 L/min to 150 L/min. As the results, the total erosion area was positively correlated with the total erosion volume in all areas. From regression analysis, the slope of the erosion volume to erosion area relationship suggested the average erosion depth, for which artificial plant area > vegetated area > bare soil area. From the comparison of root systems at the end of the two experiments, we found that in experiment I, the plant with the largest root length per plant was single-leaved salty grass, and the reed was the second; in experiment II, the single root had the largest root length of reed, followed by the single-leaf salty grass. These results suggest that root systems of the two species of emergent plants had the highest land covering ability among the four chosen plants. Since the two species have characteristics of rapid breeding, expanding root systems, and good soil-conserving effect, they are suitable for soil consolidation and slope protection of river banks and may prevent significant sediment transport to downstream.
URI: http://hdl.handle.net/11455/97651
文章公開時間: 2019-01-30
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.