Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97718
標題: 東沙島、小琉球、墾丁的皺紋陸寄居蟹 (Coenobita rugosus) 對貝殼之利用
Utilization of Shells of the Land Hermit Crabs (Coenobita rugosus) in Dongsha Island, Siaoliouciou and Kenting
作者: 李亦騏
Yi-Chi Lee
關鍵字: 皺紋陸寄居蟹
非洲大蝸牛
破碎抗力
東沙島
小琉球
後灣
殼利用
殼選擇
Coenobita rugosus
Achatina fulica
crushing resistance
Dongsha
Siaoliouciou
Houwan
shell utilization
shell selection
引用: 邱郁文、黃彥銘、蘇俊育, 2011。寶貝東沙—潮間帶軟體動物篇。海洋國家公園管理處, 高雄。 邱郁文、黃大駿、謝寶森、梁世雄, 2012。入侵種虎紋非洲大蝸牛Achatina panther (Férussac, 1821) 之紀錄 (腹足綱: 非洲大蝸牛科)。國立台灣博物館學刊 65: 57-65。 李政璋、邱郁文, 2013。半島陸蟹—恆春半島陸蟹導覽。國立海洋生物博物館, 屏東。 李榮祥, 2005。龍潭、涼山與南仁山地區的淡水蟹生殖生態學。靜宜大學生態研究所碩士論文。 林震岩, 2012。多變量分析: SPSS 的操作與應用。智勝文化事業有限公司, 台北。 施習德, 2012a。東沙島潮間帶至陸域蟹類與寄居蟹調查。海洋國家公園管理處成果報告。 施習德, 2012b。鐵甲武士—東沙島海濱蟹類。海洋國家公園管理處, 高雄。 洪銘成, 2003。我們姓台灣: 台灣特有種‧台灣外來種—農園大食客, 福壽螺與非洲大蝸牛。經典雜誌 278-289。 海洋國家公園管理處, 2013。東沙環礁國家公園計畫第一次通盤檢討(草案)。海洋國家公園管理處, 高雄。 陳瑞谷, 2015。非洲大蝸牛對東沙島皺紋陸寄居蟹族群結構的影響。台灣生物多樣性研究 17: 331-341。 陳溫柔、曾雀芬、羅柳墀, 2012。小琉球潮間帶軟體動物。屏東縣政府, 屏東。 陳溫柔、羅柳墀, 2014。小琉球的螃蟹和寄居蟹。屏東縣政府, 屏東。 黃盈達, 2014。樜鱗集。國立海洋生物博物館館訊71: 2。 游祥平、符菊永, 1991。台灣的寄居蟹。南天書局, 台北。 楊思諒, 1986。胃磨結構在蟹類分類研究上的意義 (甲殼綱: 歪尾派)。動物分類學報 11: 151-159。 蔡宗憲, 2018 (6 月 8 日)。墾丁盜抓300隻寄居蟹 官方開罰:養不活還教壞囝仔!自由時報地方新聞。 潘建志, 2013 (7 月 10 日)。寄居蟹浩劫 後灣人盜抓千隻。中國時報地方新聞。 潘建志, 2017 (10 月 12 日)。「小琉球寄居蟹可以到旗津放生嗎?」 遊客疑問惹怒網友。中國時報生活焦點。 劉烘昌, 2014。陸蟹的路殺:問題與對策。生態台灣 43: 64-72。 賴景陽, 2005。台灣貝類圖鑑。貓頭鷹出版社, 台北。 謝伯娟、黃重期、吳書平, 2003。台灣蝸牛圖鑑。行政院農業委員會林務局, 台北。 Abrams, P. 1978. Shell selection and utilization in a terrestrial hermit crab, Coenobita compressus (H. Milne Edwards). Oecologia 34: 239-253. Alcaraz, G., C. E. Chávez-Solís & K. Kruesi. 2015. Mismatch between body growth and shell preference in hermit crabs is explained by protection from predators. Hydrobiologia 743: 151-156. Angilletta J., J. Michael, D. S. Todd & W. S. Michael. 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology 44: 498-509. Arce, E. & G. Alcaraz. 2012. Shell preference in a hermit crab: comparison between a matrix of paired comparisons and a multiple-alternative experiment. Marine Biology 159: 853-862. Arce, E. & G. Alcaraz. 2013. Plasticity of shell preference and its antipredatory advantages in the hermit crab Calcinus californiensis. Canadian Journal of Zoology 91: 321-327. Asakura, A. 1991. Population ecology of the sand-dwelling hermit crab Diogenes nitidimanus. IV. Larval settlement. Marine Ecology Progress Series: 139-146. Ball, E. E. 1972. Observations on the biology of the hermit crab, Coenobita compressus H. Milne Edwards (Decapoda; Anomura) on the west coast of the Americas. Revista de Biologia Tropical 20: 265-273. Bertini, G. & A. Fransozo. 1999. Relative growth of Petrochirus diogenes (Linnaeus, 1758) (Crustacea, Anomura, Diogenidae) in the Ubatuba region, São Paulo, Brazil. Revista Brasileira de Biologia 59: 617-625. Bertness, M. D. 1980. Shell preference and utilization patterns in littoral hermit crabs of the Bay of Panama. Journal of Experimental Marine Biology and Ecology 48: 1-16. Bertness, M. D. 1981a. Pattern and plasticity in tropical hermit crab growth and reproduction. American Naturalist 117: 754-773. Bertness, M. D. 1981b. The influence of shell-type on hermit crab growth rate and clutch size (Decapoda, Anomura). Crustaceana 40: 197-205. Bertness, M. D. & C. Cunningham. 1981. Crab shell-crushing predation and gastropod architectural defense. Journal of Experimental Marine Biology and Ecology 50: 213-230. Biagi, R. & F. L. M. Mantelatto. 2006. Relative growth and sexual maturity of the hermit crab Paguristes erythrops (Anomura, Diogenidae) from South Atlantic. Hydrobiologia 559: 247-254. Blackstone, N. W. 1985. The effects of shell size and shape on growth and form in the hermit crab Pagurus longicarpus. Biological Bulletin 168: 75-90. Blackstone, N. W. 1986. Variation of cheliped allometry in a hermit crab: The role of introduced periwinkle shells. Biological Bulletin 171: 379-390. Briffa, M., S. D. Rundle, & A. Fryer. 2008. Comparing the strength of behavioural plasticity and consistency across situations: animal personalities in the hermit crab Pagurus bernhardus. Proceedings of the Royal Society of London B: Biological Sciences 275: 1305-1311. Brodersen, J. & M. Henry. 2003. The effect of calcium concentration on the crushing resistance, weight and size of Biomphalaria sudanica (Gastropoda: Planorbidae). Hydrobiologia 490: 181-186. Buck, T. L., G. A. Breed, S. C. Pennings, M. E. Chase, M. Zimmer & T. H. Carefoot. 2003. Diet choice in an omnivorous salt-marsh crab: different food types, body size, and habitat complexity. Journal of Experimental Marine Biology and Ecology 292: 103-116. Bueno, S. L. S. & R. M. Shimizu. 2009. Allometric growth, sexual maturity, and adult male chelae dimorphism in Aegla franca (Decapoda: Anomura: Aeglidae). Journal of Crustaceana Biology 29: 317-328. Chaves-Campos, J., L. M. Coghill, F. J. García de León & S. G. Johnson. 2012. The effect of aquatic plant abundance on shell crushing resistance in a freshwater snail. PloS One 7: e44374. Chen, E. R. 1991. Current status of food-borne parasitic zoonoses in Taiwan. Southeast Asian Journal of Tropical Medicine and Public Health 22: 62-4. da Silva, E. C. & E. P. Omena. 2014. Population dynamics and reproductive biology of Achatina fulica Bowdich, 1822 (Mollusca, Gastropoda) in Salvador-Bahia. Biota Neotropica 14: 1-11. de Lira, J. J. P. R., T. C. dos Santos Calado, C. F. Rezende & J. R. F. Silva. 2015. Comparative biology of the crab Goniopsis cruentata: geographic variation of body size, sexual maturity, and allometric growth. Helgoland Marine Research 69: 335-342. Drew, M. M., M. J. Smith & B. S. Hansson. 2013. Factors influencing growth of giant terrestrial robber crab Birgus latro (Anomura: Coenobitidae) on Christmas Island. Aquatic Biology 19: 129-141. Elwood, R. W., A. McClean & L. Webb. 1979. The development of shell preferences by the hermit crab Pagurus bernhardus. Animal Behaviour 27: 940-946. Elwood, R. W. & M. Appel. 2009. Pain experience in hermit crabs? Animal Behaviour 77: 1243-1246. Epa, U. P. K. & T. W. J. T. De Silva. 2011. A study on diversity and shell utilization of hermit crabs (Families Coenobitidae and Diogenidae) in the Western coast of Sri Lanka. Department of Zoology, University of Kelaniya. Field, A. P. 2005. Kendall's coefficient of concordance. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of Statistics in Behavioral Science. 1010-1011. John Wiley & Sons Ltd, Chichester. Fotheringham, N. 1976a. Hermit crab shells as a limiting resource (Decapoda, Paguridea). Crustaceana 31: 193-199. Fotheringham, N. 1976b. Population consequences of shell utilization by hermit crabs. Ecology 57: 570-578. Fransozo, A., R. B. Garcia & F. L. M. Mantelatto. 2003. Morphometry and sexual maturity of the tropical hermit crab Calcinus tibicen (Crustacea, Anomura) from Brazil. Journal of Natural History 37: 297-304. Goldschmidt, R. 1940. The material basis of evolution. Vol. 28. Yale University Press. Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41: 587-640. Greenaway, P. 2003. Terrestrial adaptations in the anomura (Crustacea Decapoda). Memoirs of Museum Victoria 60: 13-26. Guillén, F. C. & J. L. Osorno. 1993. Elección de concha en Coenobita compressus (Decapoda: Coenobitidae). Revista de Biología Tropical 41: 65-65. Gusev, O. & Y. Zabotin. 2007. Observation of intersexuality in land hermit crabs (Anomura: Coenobitidae). Journal of the Marine Biological Association of the United Kingdom 87: 533-536. Hsu, C. H. & K. Soong. 2017a. Has the land hermit crab Coenobita purpureus settled in Taiwan? Crustaceana 90: 111-118. Hsu, C. H. & K. Soong. 2017b. Mechanisms causing size differences of the land hermit crab Coenobita rugosus among eco-islands in southern Taiwan. PloS One 12: e0174319. Hunter, W. R., M. L. Apley, A. J. Burky, & R. T. Meadows. 1967. Interpopulation variations in calcium metabolism in the stream limpet, Ferrissia rivularis (Say). Science, 155: 338-340. Jackson, N. W. & R. W. Elwood. 1989. Memory of information gained during shell investigation by the hermit crab, Pagurus bernhardus. Animal Behaviour 37: 529-534. Jordaens, K., H. De Wolf, B. Vandecasteele, R. Blust & T. Backeljau. 2006. Associations between shell strength, shell morphology and heavy metals in the land snail Cepaea nemoralis (Gastropoda, Helicidae). Science of the Total Environment 363: 285-293. Kim, T. W. 2010. Food storage and carrion feeding in the fiddler crab Uca lactea. Aquatic Biology 10: 33-39. Lancaster, I. 1988. Pagurus bernhardus (L.) – an introduction to the natural history of hermit crabs. Field Studies 7: 189-238. Manjón-Cabeza, M. E. & J. E. García Raso. 1996. Study of size relationships and relative growth of Cestopagurus timidus (Roux). A method for separating groups (Crustacea, Decapoda, Anomura). Spixiana 19: 239-248. Manjón-Cabeza, M. E. & J. E. García Raso. 1999. Relative growth of the dominant hermit crabs (Decapoda, Anomura) of detritic bottoms from southern Spain. Crustaceana 72: 507-515. Mantelatto, F. L. M. & J. M. Martinelli. 2001. Relative growth and sexual dimorphism of the South Atlantic hermit crab Loxopagurus loxochelis (Anomura, Diogenidae) from Ubatuba, Brazil. Journal of Natural History 35: 429-437. McGaw, I. J., M. J. Kaiser, E. Naylor & R. N. Hughes. 1992. Intraspecific morphological variation related to the moult‐cycle in colour forms of the shore crab Carcinus maenas. Journal of Zoology 228: 351-359. McLaughlin, P. A., D. L. Rahayu, T. Komai & T. Y. Chan. 2007. A catalog of the hermit crabs (Paguroidea) of Taiwan. National Taiwan Ocean University. McKinney, R. A., S. M. Glatt & S. R. Williams. 2004. Allometric length-weight relationships for benthic prey of aquatic wildlife in coastal marine habitats. Wildlife Biology 10: 241-249. McMahon, B. R. & W. W. Burggren. 1979. Respiration and adaptation to the terrestrial habitat in the land hermit crab Coenobita clypeatus. Journal of Experimental Biology 79: 265-281. Meireles, A. L., R. Biagi & F. L. M. Mantelatto. 2003. Hermit crabs in evidence: unusual gastropod shell occupation. Nauplius 11: 63-66. Milner, R. N. C., T. Detto, M. D. Jennions, & P. R. Y. Backwell. 2010. Hunting and predation in a fiddler crab. Journal of Ethology, 28: 171. Mitchell, K. A. 1975. An analysis of shell occupation by two sympatric species of hermit crab. I. Ecological factors. Biological Bulletin 149: 205-213. Nakasone, Y. 1988. Land hermit crabs from the Ryukyus, Japan, with a description of a new species from the Philippines (Crustacea, Decapoda, Coenobitidae). Zoological Science 5: 165-178. Nakasone, Y. 2001. Reproductive biology of three land hermit crabs (Decapoda: Anomura: Coenobitidae) in Okinawa, Japan. Pacific Science 55: 157-169. Nappi, A., P. Brunet‐Lecomte & S. Montuire. 2006. Intraspecific morphological tooth variability and geographical distribution: Application to the Savi's vole, Microtus (Terricola) savii (Rodentia, Arvicolinae). Journal of Natural History 40: 345-358. Osorno, J. L., F. C. Lourdes & R. J. Cristina. 1998. Are hermit crabs looking for light and large shells: evidence from natural and field induced shell exchanges. Journal of Experimental Marine Biology and Ecology 222: 163-173. Page, H. M. & S. W. Willason. 1982. Distribution patterns of terrestrial hermit crabs at Enewetak Atoll, Marshall Islands. Pacific Science 36: 107-117. Page, H. M. & S. W. Willason. 1983. Feeding activity patterns and carrion removal by terrestrial hermit crabs at Enewetak Atoll, Marshall Islands. Pacific Science 37(2): 151-155. Parry, G. D. 1981. The meanings of r-and K-selection. Oecologia 48: 260-264. Provenzano, A. J. 1962. The larval development of the tropical land hermit Coenobita clypeatus (Herbst) in the laboratory. Crustaceana 4: 207-228. Rahayu, D. L., H. T. Shih & P. K Ng. 2016. A new species of land hermit crab in the genus Coenobita Latreille, 1829 from Singapore, Malaysia and Indonesia, previously confused with C. cavipes Stimpson, 1858 (Crustacea: Decapoda: Anomura: Coenobitidae). Raffles Bulletin of Zoology Supplement 34: 470-488. Reddy, T. & R. Biseswar. 1993. Patterns of shell utilization in two sympatric species of hermit crabs from the Natal coast (Decapoda, Anomura, Diogenidae). Crustaceana 65: 13-24. Reese, E. S. 1962. Shell selection behaviour of hermit crabs. Animal Behaviour 10: 347-360. Saitoh, T., Y. Shigeta & K. Ueda. 2008. Morphological differences among populations of the Arctic Warbler with some intraspecific taxonomic notes. Ornithological Science 7: 135-142. Sallam, W. S. 2012. Egg production and shell relationship of the land hermit crab Coenobita scaevola (Anomura: Coenobitidae) from Wadi El-Gemal, Red Sea, Egypt. Journal of Basic and Applied Zoology 65: 133-138. Sallam, W. S., F. L. Mantelatto & M. H. Hanafy. 2008. Shell utilization by the land hermit crab Coenobita scaevola (Anomura, Coenobitidae) from Wadi El-Gemal, Red Sea. Belgian Journal of Zoology 138(1): 13-19. Sanvicente-Añorve, L. & M. Hermoso-Salazar. 2011. Relative growth of the land hermit crab, Coenobita clypeatus (Anomura, Coenobitidae) from a coral reef island, southern Gulf of Mexico. Crustaceana 84: 689-699. Shih, H. T. & H. K. Mok. 2000. Utilization of shell resources by the hermit crabs Calcinus latens and Calcinus gaimardii at Kenting, southern Taiwan. Journal of Crustaceana Biology 20: 786-795. Somerton, D. A. 1980. A computer technique for estimating the size of sexual maturity in crabs. Canadian Journal of Fisheries and Aquatic Sciences 37: 1488-1494. Takeda, S. 2010. Habitat partitioning between prey soldier crab Mictyris brevidactylus and predator fiddler crab Uca perplexa. Journal of Experimental Marine Biology and Ecology 390: 160-168. Teoh, H. W. & V. C. Chong. 2014. Shell use and partitioning of two sympatric species of hermit crabs on a tropical mudflat. Journal of Sea Research 86: 13-22. Teoh, H. W. & V. C. Chong. 2015. Allometric relationships and sexual dimorphism in three ubiquitous hermit crab species (Anomura, Diogenidae) from a tropical mangrove estuary. Crustaceana 88: 1127-1138. Tomiyama, K. 2000. Daily dispersals from resting sites of the giant African snail, Achatina fulica (Ferussac) (Pulmonata; Achatinidae), on a North Pacific Island. Tropics 10: 243-249. Turra, A., J. O. Branco & F. X. Souto. 2002. Population biology of the hermit crab Petrochirus diogenes (Linnaeus) (Crustacea, Decapoda) in southern Brazil. Revista Brasileira de Zoologia 19: 1043-1051. Turra, A. & M. R. Denadai. 2004. Interference and exploitation components in interspecific competition between sympatric intertidal hermit crabs. Journal of Experimental Marine Biology and Ecology 310: 183-193. van Oosterhout, C., R. S. Mohammed, R. Xavier, J. F. Stephenson, G. A. Archard, F. A. Hockley, S. E. Perkins & J. Cable. 2013. Invasive freshwater snails provide resource for native marine hermit crabs. Aquatic Invasions 8: 185-191. Vance, R. R. 1972. Competition and mechanism of coexistence in three sympatric species of intertidal hermit crabs. Ecology 53:1062-1074. Willason, S. W. & H. M. Page. 1983. Patterns of shell resource utilization by terrestrial hermit crabs at Enewetak Atoll, Marshall Islands. Pacific Science 37(2): 157-164. Wonham, M. J., M. O'Connor, & C. D. G. Harley. 2005. Positive effects of a dominant invader on introduced and native mudflat species. Marine Ecology Progress Series 289: 109-116. Wolfrath, B. 1992. Field experiments on feeding of European fiddler crab Uca tangeri. Marine ecology Progress Series 90: 39-43. Wu, S. P., C. C. Hwang, H. M. Huang, H. W. Chang, Y. S. Lin & P. F. Lee. 2007. Land molluscan fauna of the Dongsha Island with twenty new recorded species. An International Journal of Life Science 52: 145-151. Yu, H. P. 1985. Notes on the land hermits-crabs (Crustacea, Decapoda, Coenobitidae) from Lan-yu Island in the South Taiwan. Journal of Taiwan Museum 38(2): 59-64. Zuschin, M. & R. J. Stanton Jr. 2001. Experimental measurement of shell strength and its taphonomic interpretation. Palaios 16: 161-170.
摘要: 陸寄居蟹 (Coenobita 屬) 在自然環境下最常使用蠑螺屬 (Turbo) 的殼, 然而東沙島的皺紋陸寄居蟹 (Coenobita rugosus Edwards, 1837) 卻較常使用外來種非洲大蝸牛 (Achatina fulica Bowdich, 1822) 的殼, 且體型顯得比台灣其他地區的還大。小琉球為一珊瑚礁島, 島上有許多類似蠑螺的螺殼可供陸寄居蟹使用。墾丁後灣屬於珊瑚礁地形, 在後灣有保育志工釋放各種殼型的殼, 包括食用的鳳螺屬 (Babylonia) 空殼等。本研究藉由比較東沙、小琉球和後灣的非洲大蝸牛殼破碎抗力、皺紋陸寄居蟹大螯長高比、大螯對身體的異速成長、性成熟體型、殼可用性、食性、抱卵量及皺紋陸寄居蟹的殼偏好, 來探討東沙島皺紋陸寄居蟹是否偏好使用非洲大蝸牛殼, 以及非洲大蝸牛殼是否影響其形態特徵與體型。殼破碎抗力檢測顯示, 相同大小的殼中, 東沙的蝸牛殼破碎抗力比小琉球和後灣大 (平均破碎抗力分別為 195 牛頓、179 牛頓、63 牛頓), 說明東沙島的非洲大蝸牛殼較硬, 推測較能抵抗捕食者的攻擊而較適合陸寄居蟹使用。三個地區的殼偏好實驗結果顯示, 在可選擇的情況下, 皺紋陸寄居蟹均偏好使用蠑螺殼 (偏好順序為蠑螺 > 鳳螺 > 非洲大蝸牛)。在大螯長高比和異速成長的分析中, 發現三個地區大螯和前盾長的成長均為等速成長, 顯示殼對皺紋陸寄居蟹成長的影響有限。然而東沙有大螯形狀偏向長形及異速成長偏向負異速的趨勢, 而小琉球則有大螯形狀偏向圓形及異速成長偏向正異速的趨勢。此外, 藉由異速成長推估獲得的性成熟體型, 與實際採集到的抱卵體型差異較大 (前盾長分別為 8.2 mm 和 6.7 mm), 無法以此推估性成熟體型。殼可用性中, 發現小琉球和後灣均缺乏足夠大的蠑螺殼, 可使皺紋陸寄居蟹成長到大體型 (東沙陸寄居蟹最大樣本為前盾長 17.4 mm, 迴歸分析顯示其需要殼長 75.0 mm 的蠑螺殼)。最後, 胃磨及胃含物的分析, 發現三個地區的皺紋陸寄居蟹胃含物中, 以植物碎屑最多 (分別佔 85.67%、98.86%、97.53%), 但是在胃含物中亦發現到動物碎屑。由於不同食物所提供的能量不同, 因此無法單純以食用海草做為解釋東沙島皺紋陸寄居蟹體型較大的原因。總結來說, 東沙島皺紋陸寄居蟹可能因當地資源缺乏蠑螺殼, 且當地非洲大蝸牛殼的破碎抗力較高、殼體較大, 而經常使用非洲大蝸牛殼, 並得以成長至較大的體型。皺紋陸寄居蟹所背負的殼型, 對螯的形狀、異速成長、性成熟體型等形態特徵的影響方面, 在各項分析的測量結果中, 發現均無顯著影響。
Land hermit crabs (genus Coenobita) usually occupy Turbo shells in the field, but C. rugosus in Dongsha Island use the shells of introduced Achatina fulica, and the body size seems larger than those from other areas in Taiwan. In Siaoliouciou, a coral reef island, there are abundant snail shells similar with Turbo which can be used by land hermit crabs. In Houwan of Kenting, a coral reef coast, conservation volunteers always released various types of shells, including the edible Babylonia areolata, for land hermit crabs. The purpose of this study was to explore whether C. rugosus preferred the shells of A. fulica and whether the shells influenced their morphology and body size, by comparing the crushing resistance of A. fulica shells, the shape of chela, the allometry between chela length and body length, the size of mature individuals, the availability of shells, the feeding habits, the size of clutch, and shell preference. The crushing resistance test showed the resistance values of A. fulica in Dongsha was higher than the values in Siaoliouciou and Kenting under similar size (mean = 195N, 179N, 63N, respectively). It implies the A. fulica shells in Dongsha are harder which may protect crabs from predators and become more suitable to be used by C. rugosus. The shell preference test showed the Turbo shells were preferred by C. rugosus if available (rank: Turbo > B. areolata > A. fulica). The length/width ratio of left chela and allometry of left chela length to body of individuals from three areas showed that all were isometric which suggest the shells occupied do not influence the crab morphology, although there is a negative allometry trend in Dongsha and a positive trend in Siaoliouciou. For the smallest size of mature females, the result estimated from allometry was different from the size sampled in the field (8.2 mm SL vs. 6.7 mm SL), which indicated this estimation may not be suitable. The analysis of shell availability showed that the shells of Turbo were smaller in Siaoliouciou and Kenting which may have limited the growth of C. rugosus (estimated from the largest crab in Dongsha, with 17.4 mm anterior shield length, which needs 75.0 mm of the shell length of Turbo). In stomach content analysis, although specimens from three areas had high percentage of plant debris (92.4%, 99.3%, 94.0%, respectively), some animal debris can be found. Because different food types having different energy, the larger size of C. rugosus in Dongsha can not be explained completely by ingesting seagrass. In conclusion, it is suggested that C. rugosus individuals in Dongsha occupy A. fulica shells is caused by the lack of Turbo shells, as well as the higher crushing resistance of A. fulica there. In addition, the larger A. fulica shells in Dongsha also allow crabs to grow to larger size. However, the shell types occupied do not influence the morphology of C. rugosus.
URI: http://hdl.handle.net/11455/97718
文章公開時間: 2020-08-31
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.