Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97721
標題: 海洋酸化與暖化下海草對珊瑚礁生態系之影響
The effects of seagrass presence on coral reef ecosystems under ocean acidification and warming
作者: 洪靜
Shin-Jing Ang
關鍵字: 中觀生態池
氣候變遷
珊瑚礁生態系
海草
淨系統代謝
mesocosm
climate change
coral reef ecosystem
seagrass
net ecosystem metabolism
引用: 李承錄。2009。墾丁大光泰來草 (Thalassia hemprichii) 與單脈二藥草 (Halodule uninervis) 海草床之魚類群聚變化與魚類胃內含物研究。國立中興大學生命科學系碩士學位論文。 李承錄。2015。熱帶海草床生態系對魚類資源的生態功能。國立中興大學生命科學系博士學位論文。 林幸助、李承錄、黃衍勳、鄭惠元、戴孝勳、林良瑾。2010。波光綠茵-東沙海草床。東沙環礁國家公園解說叢書-海草床篇。海洋國家公園管理處。 張宏逢。2015。海洋暖化與酸化對泰來草的影響。國立中興大學生命科學系碩士學位論文。 陳柏宏。2014。淡水河紅樹林及草澤植物的碳儲存量與碳收支。國立中興大學生命科學系碩士學位論文。 陳穎萱。2018。海草與海洋酸化對珊瑚礁淨生態鈣化作用之影響:中觀生態缸模擬結果。國立臺灣海洋大學海洋環境與生態研究所碩士學位論文。 彭上恩。2017。季節變化、聖嬰南方震盪與颱風對於潮間帶熱帶海草床之影響-以墾丁為例。國立中興大學生命科學系碩士學位論文。 黃衍勳。2012。東沙海域海草的生產力與碳收支。國立中興大學生命科學系碩士學位論文。 鍾佳芸。2012。東沙島海草床大型無脊椎動物群集的時空變化。國立中興大學生命科學系碩士學位論文。 Acuna, V., A. Giorgi, I. Muñoz, U. Uehlinger, and S. Sabater. 2004. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biology 49:960-971. Albright, R., L. Caldeira, J. Hosfelt, L. Kwiatkowski, J. K. Maclaren, B. M. Mason, Y. Nebuchina, A. Ninokawa, J. Pongratz, and K. L. Ricke. 2016. Reversal of ocean acidification enhances net coral reef calcification. Nature 531:362. Alexandre, A., A. Baeta, A. H. Engelen, and R. Santos. 2017. Interactions between seagrasses and seaweeds during surge nitrogen acquisition determine interspecific competition. Scientific Reports 7:13651. Andersson, A. J., F. T. Mackenzie, and J. P. Gattuso. 2011. Effects of ocean acidification on benthic processes, organisms, and ecosystems. Ocean Acidification 8:122-153. Annis, E. R., and C. B. Cook. 2002. Alkaline phosphatase activity in symbiotic dinoflagellates (zooxanthellae) as a biological indicator of environmental phosphate exposure. Marine Ecology Progress Series 245:11-20. Anthony, K., G. Diaz-Pulido, N. Verlinden, B. Tilbrook, and A. Andersson. 2013. Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences 10:4897-4909. Anthony, K., M. O. Hoogenboom, J. A. Maynard, A. G. Grottoli, and R. Middlebrook. 2009. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Functional Ecology 23:539-550. Arar, E. J., and G. B. Collins. 1997. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. Method 445.0. U.S. Environmental Protection Agency, Cincinnati, Ohio, USA. Ashur, M. M., N. K. Johnston, and D. L. Dixson. 2017. Impacts of ocean acidification on sensory function in marine organisms. Integrative and Comparative Biology 57:63-80. Baker, A. C., P. W. Glynn, and B. Riegl. 2008. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science 80:435-471. Beer, S. 1989. Photosynthesis and photorespiration of marine angiosperms. Aquatic Botany 34:153-166. Beer, S., and E. Koch. 1996. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Marine Ecology Progress Series 141:199-204. Bellwood, D. R., T. P. Hughes, C. Folke, and M. Nyström. 2004. Confronting the coral reef crisis. Nature 429:827. Biber, P. D. 2002. The effects of environmental stressors on the dynamics of three functional groups of algae in Thalassia testudinum habitats of Biscayne Bay, Florida: a modeling approach. University of Miami Coral Gables FL. Bruno, J. F., and E. R. Selig. 2007. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2:e711. Bruno, J. F., and A. Valdivia. 2016. Coral reef degradation is not correlated with local human population density. Scientific Reports 6:29778. Campbell, J. E., and J. W. Fourqurean. 2013. Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Marine Biology 160:1465-1475. Chevin, L.-M., R. Lande, and G. M. Mace. 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biology 8:e1000357. Christianen, M. J., J. van Belzen, P. M. Herman, M. M. van Katwijk, L. P. Lamers, P. J. van Leent, and T. J. Bouma. 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS One 8:e62413. Clarke, K. R., and R. M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd Edition. PRIMER-E Ltd: Plymouth, UK. Collier, C., and M. Waycott. 2014. Temperature extremes reduce seagrass growth and induce mortality. Marine Pollution Bulletin 83:483-490. Comeau, S., R. Carpenter, Y. Nojiri, H. Putnam, K. Sakai, and P. Edmunds. 2014. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Proceedings of the Royal Society of London B: Biological Sciences 281:20141339. Comeau, S., P. J. Edmunds, N. Spindel, and R. C. Carpenter. 2013. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnology and Oceanography 58:388-398. Costanza, R., R. de Groot, P. Sutton, S. Van der Ploeg, S. J. Anderson, I. Kubiszewski, S. Farber, and R. K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26:152-158. Davies, P. M., S. E. Bunn, and S. K. Hamilton. 2008. Primary production in tropical streams and rivers. Pages 23-42 in D. Dudgeon, editors. Tropical stream ecology. Elsevier, Amsterdam, Netherlands. Davies, P. S. 1989. Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine Biology 101:389-395. Davison, I. R. 1991. Environmental effects on algal photosynthesis: temperature. Journal of Phycology 27:2-8 den Hartog, C., and J. Kuo. 2007. Taxonomy and biogeography of seagrasses. Pages 1-23 in A. W. D. Larkum, R. J. Orth, and C. Duarte, editors. Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht, Netherlands. Diaz‐Pulido, G., K. R. Anthony, D. I. Kline, S. Dove, and O. Hoegh‐Guldberg. 2012. Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology 48:32-39. Dickson, A., and F. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers 34:1733-1743. Dodds, W. K. 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51:671-680. Dove, S. G., D. I. Kline, O. Pantos, F. E. Angly, G. W. Tyson, and O. Hoegh-Guldberg. 2013. Future reef decalcification under a business-as-usual CO2 emission scenario. Proceedings of the National Academy of Sciences 110:15342-15347. Duarte, C. M., and C. L. Chiscano. 1999. Seagrass biomass and production: a reassessment. Aquatic Botany 65:159-174. Duarte, C. M., J. J. Middelburg, and N. Caraco. 2004. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences Discussions 1:659-679. Edwards, M., P. Reid, and B. Planque. 2001. Long-term and regional variability of phytoplankton biomass in the Northeast Atlantic (1960–1995). ICES Journal of Marine Science 58:39-49. Eyre, B. D., A. J. Andersson, and T. Cyronak. 2014. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Climate Change 4:969-976. Fabricius, K. E., C. Langdon, S. Uthicke, C. Humphrey, S. Noonan, G. De'ath, R. Okazaki, N. Muehllehner, M. S. Glas, and J. M. Lough. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1:165-169. Fabry, V. J., B. A. Seibel, R. A. Feely, and J. C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65:414-432. Falkowski, P. G., Z. Dubinsky, L. Muscatine, and J. W. Porter. 1984. Light and the bioenergetics of a symbiotic coral. Bioscience 34:705-709. Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. J. Collins, P. Cox, F. Driouech, S. Emori, and V. Eyring. 2013. Evaluation of climate models. Pages 741-866 in T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, editors. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA. Gardner, T. A., I. M. Côté, J. A. Gill, A. Grant, and A. R. Watkinson. 2003. Long-term region-wide declines in Caribbean corals. Science 301:958-960. Gazeau, F., L. M. Parker, S. Comeau, J. P. Gattuso, W. A. O'Connor, S. Martin, H. O. Pörtner, and P. M. Ross. 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160:2207-2245. Gharbia, H. B., O. K.-D. Yahia, P. Cecchi, E. Masseret, Z. Amzil, F. Herve, G. Rovillon, H. Nouri, C. M'Rabet, and D. Couet. 2017. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates. PLoS One 12:e0187963. Gillanders, B. M. 2007. Seagrasses, fish, and fisheries. Pages 503-505 in A. W. D. Larkum, R. J. Orth, and C. Duarte, editors. Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht, Netherlands. Giordano, M., J. Beardall, and J. A. Raven. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology. 56:99-131. Hach Company. 2003. Method 8155, Salicylate Method (Ammonia), Method 8048 Phosphorus Reactive (Orthophosphate). Loveland, CO, USA: Hach Company. Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade. 2006. Global temperature change. Proceedings of the National Academy of Sciences 103:14288-14293. Heck Jr, K., G. Hays, and R. J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253:123-136. Hemminga, M. A., and C. M. Duarte. 2000. Seagrass ecology. Cambridge University Press, Cambridge, UK. Hendriks, I. E., Y. Olsen, L. Ramajo, L. Basso, A. Steckbauer, T. Moore, J. Howard, and C. Duarte. 2014. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11:333. Hoegh-Guldberg, O., P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, and K. Caldeira. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1737-1742. Huang, X., L. Huang, Y. Li, Z. Xu, C. Fong, D. Huang, Q. Han, H. Huang, Y. Tan, and S. Liu. 2006. Main seagrass beds and threats to their habitats in the coastal sea of South China. Chinese Science Bulletin 51:136-142. Hughes, T. P. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547-1551. Hunt, R. J., T. D. Jardine, S. K. Hamilton, and S. E. Bunn. 2012. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet‐dry tropical river. Freshwater Biology 57:435-450. Hurd, C. L., P. J. Harrison, K. Bischof, and C. S. Lobban. 2014. Seaweed ecology and physiology. Cambridge University Press, Cambridge, UK. Israel, A., and M. Hophy. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Global Change Biology 8:831-840. Jackson, A. E., and D. Yellowlees. 1990. Phosphate uptake by zooxanthellae isolated from corals. Proc. R. Soc. Lond. B 242:201-204. Jeffrey, S. W., and G. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167:191-194. Jiang, Z. J., X. P. Huang, and J. P. Zhang. 2010. Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. Journal of Integrative Plant Biology 52:904-913. Jokiel, P. L. 2011. The reef coral two compartment proton flux model: A new approach relating tissue-level physiological processes to gross corallum morphology. Journal of Experimental Marine Biology and Ecology 409:1-12. Jones, R. J., O. Hoegh‐Guldberg, A. W. Larkum, and U. Schreiber. 1998. Temperature‐induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell & Environment 21:1219-1230. Katsikatsou, M., A. Anestis, H. O. Pörtner, A. Vratsistas, K. Aligizaki, and B. Michaelidis. 2012. Field studies and projections of climate change effects on the bearded horse mussel Modiolus barbatus in the Gulf of Thermaikos, Greece. Marine Ecology Progress Series 449:183-196. Kemp, W., and W. Boynton. 1980. Influence of biological and physical processes on dissolved oxygen dynamics in an estuarine system: implications for measurement of community metabolism. Estuarine and Coastal Marine Science 11:407-431. Kemp, W., and J. Testa. 2011. Metabolic balance between ecosystem production and consumption. Pages 83-118 in E. Wolanski, and D. S. McLusky, editors. Treatise on Estuarine and Coastal Science. Academic Press, New York, USA. Keppel, G., and G. W. Wardell‐Johnson. 2012. Refugia: keys to climate change management. Global Change Biology 18:2389-2391. Kiswara, W., N. Behnke, P. Van Avesaath, A. Huiskes, P. Erftemeijer, and T. Bouma. 2009. Root architecture of six tropical seagrass species, growing in three contrasting habitats in Indonesian waters. Aquatic Botany 90:235-245. Kline, D. I., L. Teneva, K. Schneider, T. Miard, A. Chai, M. Marker, K. Headley, B. Opdyke, M. Nash, and M. Valetich. 2012. A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports 2:413. Knowlton, N. 2001. The future of coral reefs. Proceedings of the National Academy of Sciences 98:5419-5425. Koch, E. W., J. D. Ackerman, J. Verduin, and M. van Keulen. 2007. Fluid dynamics in seagrass ecology—from molecules to ecosystems. Pages 193-225 in A. W. D. Larkum, R. J. Orth, and C. Duarte, editors. Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht, Netherlands. Koch, M., G. Bowes, C. Ross, and X. H. Zhang. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19:103-132. Kroeker, K. J., R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte, and J. P. Gattuso. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19:1884-1896. Kurihara, H., and Y. Shirayama. 2004. Effects of increased atmospheric CO₂ on sea urchin early development. Marine Ecology Progress Series 274:161-169. Lai, S., L. Gillis, C. Mueller, T. Bouma, J. Guest, K. Last, A. Ziegler, and P. Todd. 2013. First experimental evidence of corals feeding on seagrass matter. Coral Reefs 32:1061-1064. Lamb, J. B., J. A. van de Water, D. G. Bourne, C. Altier, M. Y. Hein, E. A. Fiorenza, N. Abu, J. Jompa, and C. D. Harvell. 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355:731-733. Lan, C.-Y., W.-Y. Kao, H.-J. Lin, and K.-T. Shao. 2005. Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrasses Thalassia hemprichii and Halodule uninervis. Marine Biology 148:25-34. Lee, K. S., S. R. Park, and Y. K. Kim. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350:144-175. Lee, T. C., and B. D. Hsu. 2009. Disintegration of the cells of siphonous green alga Codium edule (Bryopsidales, Chlorophyta) under mild heat stress. Journal of Phycology 45:348-356. Lewis, E., D. Wallace, and L. J. Allison. 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA. Longhini, C. M., M. F. Souza, and A. M. Silva. 2015. Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil. Estuarine, Coastal and Shelf Science 166:13-23. Manzello, D. P., I. C. Enochs, N. Melo, D. K. Gledhill, and E. M. Johns. 2012. Ocean acidification refugia of the Florida reef tract. PLoS One 7:e41715. Marcarelli, A. M., C. V. Baxter, M. M. Mineau, and R. O. Hall. 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215-1225. Marsh Jr, J. A., W. C. Dennison, and R. S. Alberte. 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). Journal of Experimental Marine Biology and Ecology 101:257-267. Mateo, M., J. Cebrián, K. Dunton, and T. Mutchler. 2006. Carbon flux in seagrass ecosystems. Pages 159-192 in A. W. D. Larkum, R. J. Orth, and C. Duarte, editors. Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht, Netherlands. Maxwell, K., and G. N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany 51:659-668. Mayfield, A. B., M.-N. Chen, P.-J. Meng, H.-J. Lin, C.-S. Chen, and P.-J. Liu. 2013. The physiological response of the reef coral Pocillopora damicornis to elevated temperature: results from coral reef mesocosm experiments in Southern Taiwan. Marine Environmental Research 86:1-11. McCulloch, M., J. Falter, J. Trotter, and P. Montagna. 2012. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change 2:623-627. Mehrbach, C., C. Culberson, J. Hawley, and R. Pytkowicx. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18:897-907. Meron, D., E. Atias, L. I. Kruh, H. Elifantz, D. Minz, M. Fine, and E. Banin. 2011. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. The ISME journal 5:51. Mulholland, P., C. Fellows, J. Tank, N. Grimm, J. Webster, S. Hamilton, E. Marti, L. Ashkenas, W. Bowden, and W. Dodds. 2001. Inter‐biome comparison of factors controlling stream metabolism. Freshwater Biology 46:1503-1517. Munday, P. L., D. L. Dixson, M. I. McCormick, M. Meekan, M. C. Ferrari, and D. P. Chivers. 2010. Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences 107:12930-12934. Nakamura, Y., and M. Tsuchiya. 2008. Spatial and temporal patterns of seagrass habitat use by fishes at the Ryukyu Islands, Japan. Estuarine, Coastal and Shelf Science 76:345-356. Nellemann, C., and E. Corcoran. 2009. Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. UNEP/Earthprint, Hertfordshire, UK. Nilsson, G. E., and S. Lefevre. 2016. Physiological challenges to fishes in a warmer and acidified future. Physiology 31:409-417. Nordlund, L. M., E. L. Jackson, M. Nakaoka, J. Samper-Villarreal, P. Beca-Carretero, and J. C. Creed. 2017. Seagrass ecosystem services–What's next? Marine Pollution Bulletin. O'Brien, K. R., M. P. Adams, A. J. Ferguson, J. Samper-Villarreal, P. S. Maxwell, M. E. Baird, and C. Collier. 2018. Seagrass resistance to light deprivation: implications for resilience. Pages 287-311. Seagrasses of Australia. Springer, Cham. Odum, H. T. 1956. Primary production in flowing waters. Limnology and Oceanography 1:102-117. Odum, H. T. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs 27:55-112. Okazaki, R., P. Swart, and C. Langdon. 2013. Stress-tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs 32:671-683. Orth, R. J., T. J. Carruthers, W. C. Dennison, C. M. Duarte, J. W. Fourqurean, K. L. Heck, A. R. Hughes, G. A. Kendrick, W. J. Kenworthy, and S. Olyarnik. 2006. A global crisis for seagrass ecosystems. Bioscience 56:987-996. Pörtner, H. O. 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 132:739-761. Pörtner, H. O., D. M. Karl, P. W. Boyd, W. Cheung, S. E. Lluch-Cota, Y. Nojiri, D. N. Schmidt, P. O. Zavialov, J. Alheit, and J. Aristegui. 2014. Ocean systems. Pages 411-484 in C. B. Field, V. R. Barros, D. J. Dokken, K .J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White, editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA. Pai, S. C., and J. Riley. 1994. Determination of nitrate in the presence of nitrite in natural waters by flow injection analysis with a non-quantitative on-line cadmium reductor. International Journal of Environmental Analytical Chemistry 57:263-277. Palacios, S. L., and R. C. Zimmerman. 2007. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series 344:1-13. Pinsky, M. L., B. Worm, M. J. Fogarty, J. L. Sarmiento, and S. A. Levin. 2013. Marine taxa track local climate velocities. Science 341:1239-1242. Poloczanska, E. S., C. J. Brown, W. J. Sydeman, W. Kiessling, D. S. Schoeman, P. J. Moore, K. Brander, J. F. Bruno, L. B. Buckley, and M. T. Burrows. 2013. Global imprint of climate change on marine life. Nature Climate Change 3:919-925. Porzio, L., M. C. Buia, and J. M. Hall-Spencer. 2011. Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology 400:278-287. Rädecker, N., C. Pogoreutz, C. R. Voolstra, J. Wiedenmann, and C. Wild. 2015. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends in Microbiology 23:490-497 Renegar, D. A., and B. M. Riegl. 2005. Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Marine Ecology Progress Series 293:69-76. Repolho, T., B. Duarte, G. Dionísio, J. R. Paula, A. R. Lopes, I. C. Rosa, T. F. Grilo, I. Caçador, R. Calado, and R. Rosa. 2017. Seagrass ecophysiological performance under ocean warming and acidification. Scientific Reports 7:41443. Richmond, R. 1987. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Marine Biology 93:527-533. Riddle, D. 2013. Aquarium Equipment: PAR Meters and LEDs - How Accurate are the Measurements? A Comparison of Three Meters and Lux to PAR Conversion Factors for LEDs. Retrieved May 10, 2018, from https://www.advancedaquarist.com/ Robblee, M. B., and J. C. Zieman. 1984. Diel variation in the fish fauna of a tropical seagrass feeding ground. Bulletin of Marine Science 34:335-345. Roberts, B. J., P. J. Mulholland, and W. R. Hill. 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588-606. Rosemond, A. D., P. J. Mulholland, and J. W. Elwood. 1993. Top‐down and bottom‐up control of stream periphyton: effects of nutrients and herbivores. Ecology 74:1264-1280. Rosenberg, E., O. Koren, L. Reshef, R. Efrony, and I. Zilber-Rosenberg. 2007. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology 5:355. Schiel, D. R., J. R. Steinbeck, and M. S. Foster. 2004. Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833-1839. Schoepf, V., A. G. Grottoli, M. E. Warner, W. J. Cai, T. F. Melman, K. D. Hoadley, D. T. Pettay, X. Hu, Q. Li, and H. Xu. 2013. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8:e75049. Schwartz, E. R., R. X. Poulin, N. Mojib, and J. Kubanek. 2016. Chemical ecology of marine plankton. Natural Product Reports 33:843-860. Short, F. T., and C. McRoy. 1984. Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Botanica Marina 27:547-556. Short, F. T., and C. M. Duarte. 2001. Methods for the measurement of seagrass growth and production. Global Seagrass Research Methods 2001:155-198. Short, F. T., and C. A. Short. 1984. The seagrass filter: purification of estuarine and coastal waters. Pages 395-413 in V. S. Kennedy, editors. The Estuary as a Filter. Academic Press, Orlando, Florida, USA. Short, F. T., and H. A. Neckles. 1999. The effects of global climate change on seagrasses. Aquatic Botany 63:169-196. Smith, S., and G. Key. 1975. Carbon dioxide and metabolism in marine environments. Limnology and Oceanography 20:493-495. Staehr, P. A., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen, and S. V. Smith. 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74:15-29. Stocker, T. F., D. Qin, G. K. Plattner, L. V. Alexander, S. K. Allen, N. L. Bindoff, F. M. Bréon, J. A. Church, U. Cubasch, and S. Emori. 2013. Technical summary. Pages 33-115 in C. B. Field, V. R. Barros, D. J. Dokken, K .J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White, editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA. Strickland, J. D., and T. R. Parsons. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, Canada. Sunday, J. M., G. T. Pecl, S. Frusher, A. J. Hobday, N. Hill, N. J. Holbrook, G. J. Edgar, R. Stuart‐Smith, N. Barrett, and T. Wernberg. 2015. Species traits and climate velocity explain geographic range shifts in an ocean‐warming hotspot. Ecology Letter 18:944-953. Takahashi, S., and N. Murata. 2008. How do environmental stresses accelerate photoinhibition? Trends in Plant Science 13:178-182. Tang, Y. Z., and C. J. Gobler. 2011. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10:480-488. Thorp, J. H., and M. D. Delong. 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96:543-550. Touchette, B. W., and J. M. Burkholder. 2000. Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology 250:133-167. Tout, J., N. Siboni, L. F. Messer, M. Garren, R. Stocker, N. S. Webster, P. J. Ralph, and J. R. Seymour. 2015. Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Frontiers in Microbiology 6:432. Townsend, S. A., I. T. Webster, and J. H. Schult. 2011. Metabolism in a groundwater-fed river system in the Australian wet/dry tropics: tight coupling of photosynthesis and respiration. Journal of the North American Benthological Society 30:603-620. Tremblay, P., R. Grover, J. F. Maguer, L. Legendre, and C. Ferrier-Pagès. 2012. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. Journal of Experimental Biology 215:1384-1393. Trumper, K. 2009. The natural fix? The role of ecosystems in climate mitigation. A UNEP rapid response assessment. UNEP/Earthprint, Hertfordshire, UK. Uku, J., and M. Björk. 2005. Productivity aspects of three tropical seagrass species in areas of different nutrient levels in Kenya. Estuarine, Coastal and Shelf Science 63:407-420. van de Koppel, J., T. van der Heide, A. H. Altieri, B. K. Eriksson, T. J. Bouma, H. Olff, and B. R. Silliman. 2015. Long-distance interactions regulate the structure and resilience of coastal ecosystems. Annual Review of Marine Science 7:139-158. van Vuuren, D. P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. C. Hurtt, T. Kram, V. Krey, and J.-F. Lamarque. 2011. The representative concentration pathways: an overview. Climatic Change 109. 1-2:5. Walther, K., F. J. Sartoris, C. Bock, and H. O. Pörtner. 2009. Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 6:2207-2215. Waycott, M., C. M. Duarte, T. J. Carruthers, R. J. Orth, W. C. Dennison, S. Olyarnik, A. Calladine, J. W. Fourqurean, K. L. Heck, and A. R. Hughes. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106:12377-12381. Wernberg, T., D. A. Smale, and M. S. Thomsen. 2012. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Global Change Biology 18:1491-1498. Wetzel, R. G. 2001. Limnology: lake and river ecosystems. Gulf Professional Publishing, Oxford, UK. Yates, A., R. Brua, J. Culp, and P. Chambers. 2013. Multi‐scaled drivers of rural prairie stream metabolism along human activity gradients. Freshwater Biology 58:675-689. Yonge, C. 1931. Studies on the physiology of corals. IV. The structure, distribution and physiology of the zooxanthellae. Great Barrier Reef Exped 1928-29 Sci Rep 1:135-176. Young, C. S., and C. J. Gobler. 2016. Ocean acidification accelerates the growth of two bloom-forming macroalgae. PLoS One 11:e0155152. Zimmerman, R. C., R. D. Smith, and R. S. Alberte. 1987. Is growth of eelgrass nitrogen limited? A numerical simulation of the effects of light and nitrogen on the growth dynamics of Zostera marina. Marine Ecology Progress Series 41:167-176.
摘要: 自工業革命以來,大氣中二氧化碳(carbon dioxide, CO2)濃度迅速上升,導致海洋酸化(ocean acidification, OA)及暖化,使海洋生態系面臨威脅。高生產力的海草常生活在沿岸珊瑚礁生態系,能吸收海水中的CO2、調節酸鹼值及霰石飽和溶解度(ΩAr)。本研究目的是利用中觀生態池,探討未來面臨OA及海水暖化,海草是否具有維持珊瑚鈣化作用的能力。並透過淨系統生產量(net ecosystem production, NEP)探討中觀生態池的環境因子與生物因子之交互影響。實驗設計3組無海草組及3組具海草的珊瑚礁,進行4個酸化及升溫階段。以CO2分壓400 ppm做為未酸化情境;800 ppm做為OA情境。第一階段為未酸化及25˚C;第二階段為OA及25˚C;第三階段為OA及升溫至28˚C;第四階段為OA及升溫至31 ˚C。研究結果顯示在OA的環境下,海草組的珊瑚鈣化速率於OA(25˚C)和OA(28˚C)都高於無海草組。此外,OA環境使大型藻類增生,無海草之大型藻生長速率有高於有海草的趨勢。因此OA(25˚C)使無海草組的淨系統生產量(net ecosystem production, NEP)顯著上升,但OA對於海草組的NEP則沒有影響。無海草組和海草組面臨酸化環境下的升溫,系統呼吸量(ecosystem respiration)都隨溫度升高而逐漸上升,但總初級生產量(gross primary production)於OA(28˚C)達到最高後於OA(31˚C)下降。因31˚C的高溫環境降低大型藻類的生長速率並且提高死亡率。無海草組於OA(31˚C)急劇下降了 0.93±0.22 g O2 m-2 d-1,而海草組則是下降了0.68±0.13 g O2 m-2 d-1。未來OA和31˚C暖化,具海草之生態環境仍能維持珊瑚之鈣化速率,且抑制大型藻類增生的趨勢,使得NEP幅度下降幅度較小,因此海草具有穩定珊瑚礁生態系之功能。
Since the Industrial Revolution, the concentration of carbon dioxide (CO2) in the atmosphere has risen rapidly, resulting in ocean acidification (OA) and warming, which has threatened coastal ecosystems. Highly productive seagrasses usually live adjacent to or among coral reefs and can absorb CO2 in seawater, regulate the pH and the aragonite saturation state (ΩAr). The purpose of this study was to use coral reefs mesocosms to examine the effects of seagrasses on coral reef ecosystems under OA and warming. The net ecosystem production (NEP) was used to determine the functioning of the mesocosms. Three mesocosms without seagrass and three mesocosms with seagrass were designed to conduct four stages of OA and warming experiments. A non-acidified CO2 partial pressure of 400 ppm was used as control and 800 ppm was used as the OA scenario. The first stage was unacidified and 25˚C; the second stage was OA and 25˚C; the third stage was OA and warmed up to 28˚C; the fourth stage was OA and the temperature was raised to 31˚C. The results showed that under the OA scenario, the coral calcification rates with seagrasses were higher in OA (25˚C) and OA (28˚C) than without seagrasses. In addition, the OA scenario proliferated the macroalgae, and the growth rate of macroalgae without seagrasses was higher than that with seagrasses. Therefore, OA (25˚C) significantly increased the NEP of the mesocosms without seagrasses, but OA had no effect on the NEP of the mesocosms with seagrasses. Ecosystem respiration (ER) increased gradually with increasing temperature under the scenario of OA, but gross primary production (GPP) in OA (28˚C) reached the maximum, then dropped in OA (31˚C). Due to the high temperature environment of 31 ̊C, the growth rate of macroalgae reduced and the mortality increased. The mesocosms without seagrasses dropped sharply at OA (31˚C) by 0.93±0.22 g O2 m-2 d-1, while the mesocosms with seagrasses decreased moderately by 0.68±0.13 g O2 m-2 d-1. Under the condition of OA and warming in the future, seagrasses can maintain the calcification rate of corals. Seagrasses can inhibit the growth of macroalgae, caused the magnitude of NEP declined less and maintain the stability of coral reef ecosystems at a high temperature of 31˚C.
URI: http://hdl.handle.net/11455/97721
文章公開時間: 2021-08-22
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.