Please use this identifier to cite or link to this item:
標題: 淡水與海水恆河稻田魚 (Oryzias dancena) 肝臟在低溫環境中粒線體生源情況受粒線體動態平衡改變之影響
Effects of changes in mitochondrial dynamics on mitochondrial biogenesis in livers of freshwater- and seawater-acclimated Indian medaka (Oryzias dancena) upon hypothermal challenge
作者: 陳雨鑫
Yu-Hsin Chen
關鍵字: 恆河稻田魚
low temperature
mitochondrial biogenesis
mitochondrial dynamics
引用: Abu-Hamad, S., Arbel, N., Calo, D., Arzoine, L., Israelson, A., Keinan, N., Shoshan-Barmatz, V. 2009. The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122, 1906-1916. Agius, L. 2008. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 414, 1-18. Arany, Z., Novikov, M., Chin, S., Ma, Y., Rosenzweig, A., Spiegelman, B.M. 2006. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. PNAS 103, 10086-10091. Arnold, S., Kadenbach, B. 1997. Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome c oxidase. Eur J Biochem 249, 350-354. Babcock, G. T., Wikström, M. 1992. Oxygen activation and the conservation of energy in cell respiration. Nature 356, 301-309. Bagarinao, T. 1994. Systematics, distribution, genetics and life history of milkfish, Chanos chanos. Environ Biol Fishes 39, 23-41. Battersby, B. J., Moyes, C. D. 1998. Influence of acclimation temperature on mitochondrial DNA, RNA, and enzymes in skeletal muscle. Am J Physiol Renal Physiol 275, R905-R912. Bay, D. C., Hafez, M., Young, M. J. 2012. Phylogenetic and coevolutionary analysis of the β-barrel protein family comprised of mitochondrial porin (VDAC) and Tom40. Biochim Biophys Acta 1818, 1502-1519. Berman, S. B., Pineda, F. J., Hardwick, J. M. 2008. Mitochondrial fission and fusion dynamics: the long and short of it. Cell Death Differ 15, 1147-1152. Bogenhagen, D., Clayton, D. A. 1977. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 11, 719-727. Bremer, K., Moyes, C. D. 2014. mRNA degradation: an underestimated factor in steady-state transcript levels of cytochrome c oxidase subunits?. J Exp Biol 217, 2212-2220. Brett, J. R. 1979. Environmental factors and growth. In: Fish physiology. (eds. W.S. Hoar, D.J. Randall and J.R. Brett), pp. 599-667. Academic Press, New York, USA. Castellana, S., Vicario, S., Saccone, C. 2011. Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein–coding genes. Genome Biol Evol 3, 1067-1079. Cerveny, K. L., Tamura, Y., Zhang, Z., Jensen, R. E., Sesaki, H. 2007. Regulation of mitochondrial fusion and division. Trends Cell Biol 17, 563-569. Chen, H., Chan, D. C. 2009. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18, R169-R176. Chen, X. J., Butow, R. A. 2005. The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6, 815-825. Chen, Z. Z., Cheng, C. H., Zhang, J. F., Cao, L. X., Chen, L., Zhou, L. H., Jin, Y. D., Ye, H., Deng, C., Dai, Z. H., Xu, Q. H., Hu, P., Sun, S. H., Shen, Y., Chen, L. B. 2008 Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. PNAS 105, 12944-12949. Chen, Z. Z., Ye, H., Zhou, L. H., Cheng, C. H., Chen, L. 2010. A gene family-based method for interspecies comparisons of sequencing-based transcriptomes and its use in environmental adaptation analysis. J Genet Genomics 37, 205-218. Cheng, E. H. Y., Sheiko, T. V., Fisher, J. K., Craigen, W. J., Korsmeyer, S. J. 2003. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513-517. Cheng, T. L., Liao, C. C., Tsai, W. H., Lin, C. C., Yeh, C. W., Teng, C. F., Chang, W. T. 2009. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J Cell Biochem 107, 1002-1015. Chou, M. Y., Hsiao, C. D., Chen, S. C., Chen, I. W., Liu, S. T., Hwang, P. P. 2008. Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. J Exp Biol 211, 3077-3084. Colombini, M. 1994. Anion channel in the mitochondrial outer membrane. Curr Top Membr 42, 73-101. Colombini, M. 2009. The published 3D structure of the VDAC channel: native or not?. Trends Biochem Sci 34, 382-389. Dagda, R. K., Cherra, S. J., Kulich, S. M., Tandon, A., Park, D., Chu, C. T. 2009. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284, 13843-13855. Dalvi, R. S., Pal, A. K., Tiwari, L. R., Das, T., Baruah, K. 2009. Thermal tolerance and oxygen consumption rates of the catfish Horabagrus brachysoma (Günther) acclimated to different temperatures. Aquaculture 295, 116-119. Daufresne, M., Lengfellner, K., Sommer, U. 2009. Global warming benefits the small in aquatic ecosystems. PNAS 106, 12788-12793. De Pinto, V., Ludwig, O., Krause, J., Benz, R., Palmieri, F. 1987. Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochim Biophys Acta 894, 109-119. Dhar, S. S., Ongwijitwat, S., Wong-Riley, M. T. 2008. Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 283, 3120-3129. Donaldson, M. R., Cooke, S. J., Patterson, D. A., Macdonald, J. S. 2008. Cold shock and fish. J Fish Biol 73, 1491-1530. Duggan, A. T., Kocha, K. M., Monk, C. T., Bremer, K., Moyes, C. D., 2011. Coordination of cytochrome c oxidase gene expression in the remodelling of skeletal muscle. J Exp Biol 214, 1880-1887. Fangue, N. A., Richards, J. G., Schulte, P. M. 2009. Do mitochondrial properties explain intraspecific variation in thermal tolerance? J Exp Biol 212, 514-522. Ferguson-Miller, S., Babcock, G. T. 1996. Heme/copper terminal oxidases. Chem Rev 96, 2889-2908. Frey, T. G., Mannella, C. A. 2000. The internal structure of mitochondria. Trends Biochem Sci 25, 319-324. Fry, F. E. J. 1971. The effect of environmental factors on the physiology of fish. Fish physiology 1-98. Gak, I. A., Radovic, S. M., Dukic, A. R., Janjic, M. M., Stojkov-Mimic, N. J., Kostic, T. S., Andric, S. A. 2015. Stress triggers mitochondrial biogenesis to preserve steroidogenesis in Leydig cells. Biochim Biophys Acta 1853, 2217-2227. Gomes, L. C., Di Benedetto, G., Scorrano, L. 2011. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13, 589. Gracey, A. Y., Fraser, E. J., Li, W., Fang, Y., Taylor, R. R., Rogers, J., Brass, A., Cossins, A. R. 2004. Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. PNAS 101, 16970-16975. Hardewig, I., Van Dijk, P. L. M., Moyes, C. D., Portner, H. O. 1999. Temperature-dependent expression of cytochrome-c oxidase in Antarctic and temperate fish. Am J Physiol Renal Physiol 277, R508-R516. Hodge, T. Colombini, M. 1997. Regulation of metabolite flux through voltage-gating of VDAC channels. J Memb Biol 157, 271–279. Hoffman, J., Katz, U. 1998. Glyconeogenesis and urea synthesis in thetoad Bufo viridis during acclimation to water restriction. Physiol Zool 71, 85–92. John, R. B., 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am Zool 11, 99-113. Ju, Z., Dunham, R. A., Liu, Z. 2002. Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation. Mol Genet Genomics 268, 87-95. Kang, C. K., Yang, W. K., Lin, S. T., Liu, C. C., Lin, H. M., Chen, H. H. et al., 2013. The acute and regulatory phases of time-course changes in gill mitochondrion-rich cells of seawater-acclimated medaka (Oryzias dancena) when exposed to hypoosmotic environments. Comp Biochem Physiol A Mol Integr Physiol 164, 181-191. Kang, D., Hamasaki, N. 2002. Maintenance of mitochondrial DNA integrity: repair and degradation. Curr Genet 41, 311-322. Kaufmann, R., Wieser, W. 1992. Influence of temperature and ambient oxygen on the swimming energetics of cyprinid larvae and juveniles. Environ Biol Fishes 33, 87-95. Lee, I., Bender, E., Kadenbach, B. 2002. Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem 234, 63-70. Lehman, J. J., Barger, P. M., Kovacs, A., Saffitz, J. E., Medeiros, D. M., Kelly, D. P. 2000. Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106, 847-856. LeMoine, C. M., Craig, P. M., Dhekney, K., Kim, J. J., McClelland, G. B. 2010. Temporal and spatial patterns of gene expression in skeletal muscles in response to swim training in adult zebrafish (Danio rerio). J Comp Physiol B 180, 151-160. LeMoine, C. M., Genge, C. E. and Moyes, C. D. 2008. Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J Exp Biol 211, 1448-1455. Liu, S. S. 1997. Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 17, 259-272. Long, Y., Li, L. C., Li, Q., He, X. Z., Cui, Z. B. 2012. Transcriptomic characterization of temperature stress responses in larval zebrafish. PloS one 7, e37209. Long, Y., Song, G. L., Yan, J. J., He, X. Z., Li, Q., Cui, Z. B. 2013. Transcriptomic characterization of cold acclimation in larval zebrafish. BMC Genomics 14, 4458-4458. Lotz, C., Lin, A. J., Black, C. M., Zhang, J., Lau, E., Deng, N., Wang, Y., Liem, D. A. 2014. Characterization, design, and function of the mitochondrial proteome: from organs to organisms. J Proteome Res 13, 433-446. Lucassen, M., Koschnick, N., Eckerle, L. G., Pörtner, H. O. 2006. Mitochondrial mechanisms of cold adaptation in cod (Gadus morhua L.) populations from different climatic zones. J Exp Biol 209, 2462-2471. Lucassen, M., Schmidt, A., Eckerle, L. G. Portner, H. O. 2003. Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish. Am J Physiol Regul Integr Comp Physiol 285, R1410-R1420. Luo, A., Zhang, A., Ho, S. Y., Xu, W., Zhang, Y., Shi, W., Cameron, S. L., Zhu, C. 2011. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. Bmc Genomics 12, 84. Marcelino, L. A., Thilly, W. G. 1999. Mitochondrial mutagenesis in human cells and tissues. Mutat Res 434, 177-203. McBride, H. M., Neuspiel, M., Wasiak, S. 2006. Mitochondria: more than just a powerhouse. Curr Biol 16, R551-R560. McClelland, G. B., Craig, P. M., Dhekney, K. Dipardo, S. 2006. Temperature-and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J Physiol 577, 739-751. McKeel, D. W., Jarett, L. 1970. Preparation and characterization of a plasma membrane fraction from isolated fat cells. J Cell Biol 44, 417-432. Messina, A., Reina, S., Guarino, F., De Pinto, V. 2012. VDAC isoforms in mammals. Biochim Biophys Acta 1818, 1466-1476. Moraes, C. T. 2001. What regulates mitochondrial DNA copy number in animal cells? Trends Genet 17, 199-205. Napiwotzki, J., Shinzawa-Itoh, K., Yoshikawa, S., Kadenbach, B. 1997. ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem 378, 1013-1021. Ning, X., He, J., Yu, T., Yang, G. 2016. Wnt3a regulates mitochondrial biogenesis through p38/CREB pathway. Biochem Biophys Res Commun pii: S0006-291X(16)30681-30687. O'Brien, K. M. 2011. Mitochondrial biogenesis in cold-bodied fishes. J Exp Biol 214, 275-285. Oliveira, G. T., Rossi, I. C., Kucharski, L. C, Da Silva, R. S. 2004. Hepatopancreas gluconeogenesis and glycogen content during fasting in crabs previously maintained on a high-protein or carbohydrate-rich diet. Comp Biochem Physiol A Mol Integr Physiol 137, 383-390. Ongwijitwat, S., Liang, H. L., Graboyes, E. M., Wong-Riley, M. T. 2006. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 374, 39-49. Orczewska, J. I., Hartleben, G., O'Brien, K. M. 2010. The molecular basis of aerobic metabolic remodeling differs between oxidative muscle and liver of threespine sticklebacks in response to cold acclimation. Am J Physiol Regul Integr Comp Physiol 299, R352-R364. Ostermeier, C., Harrenga, A., Ermler, U., Michel, H. 1997. Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. PNAS 94, 10547-10553. Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S. E., et al., 2008. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123. Parameyong, A., Govitrapong, P., Chetsawang, B. 2015. Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells. Mitochondrion 24, 1-8. Portner, H. O. 2002. Climate variations and the physiological basis of temperature-dependent biogeography: systemic to molecular hierarchy of thermal tolerancein animals. Comp Biochem Physiol A 132, 739-761. Portner, H. O., Peck, M. A. 2010. Climate change impacts on fish and fisheries: towards a cause and effect understanding. J Fish Biol 77, 1745-1779. Poyton, R. O. McEwen, J. E. 1996. Crosstalk between nuclear and mitochondrial genomes. Ann Rev Biochem 65, 563-607. Pozzan, T., Rizzuto, R., Volpe, P., Meldolesi, J. 1994. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74, 595-636. Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., Spiegelman, B. M. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839. Rambold, A. S., Kostelecky, B., Elia, N., Lippincott-Schwartz, J. 2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. PNAS 108, 10190-10195. Ramzan, R., Staniek, K., Kadenbach, B., Vogt, S. 2010. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta 1797, 1672-1680. Renis, M., Cantatore, P., Polosa, P. L., Fracasso, F., Gadaleta, M. N. 1989. Content of mitochondrial DNA and of three mitochondrial RNAs in developing and adult rat cerebellum. J Neurochem 52, 750-754. Reyes, B. A., Pendergast, J. S., Yamazaki, S. 2008. Mammalian peripheral circadian oscillators are temperature compensated. J Biol Rhythms 23, 95-98. Roberts, T. R. 1998. Systematic observations on tropical Asian medakas or ricefishes of the genus Oryzias, with descriptions of four new species. Ichthyological Research 45, 213-224. Rostovtseva, T., Colombini, M. 1996. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem 271, 28006-28008. Rostovtseva, T., Colombini, M. 1997. VDAC channels mediate and gate the flow of ATP: implications for regulation of mitochondrial function. Biophys J 72, 1954-1962. Rui, L. 2014. Energy metabolism in the liver. Compr Physiol 4, 177-197. Ryan, M. T., Hoogenraad, N. J. 2007. Mitochondrial-nuclear communications. Annu Rev Biochem 76, 701-722. Sampson, M. J., Lovell, R. S., Craigen, W. J. 1997. The murine voltage-dependent anion channel gene family. J Biol Chem 272, 18966-18973. Schenkel, L. C., Bakovic, M. 2014. Formation and regulation of mitochondrial membranes. Int J Biochem Cell Biol vol. 2014, Article ID 709828, 13 pages Schreck, C. B., Contreras-Sanchez, W., Fitzpatrick, M. S. 2001. Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 197, 3-24. Schulte, P., Healy, T., Fangue, N. A. 2011. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr Comp Biol 51, 691-702. Seddon, W. L., Prosser, C. L. 1997. Seasonal variations in the temperature acclimation response of the channel catfish, Ictalurus punctatus. Physiol Zool 70, 33-44. Shaklee, J. B., Christiansen, J. A., Sidell, B. D., Prosser, C. L., Whitt, G. S. 1977. Molecular aspects of temperature acclimation in fish: Contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. J Exp Zool 201, 1-20. Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y., Tsujimoto, Y. 2001. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152, 237-250. Shirakabe, A., Zhai, P., Ikeda, Y., Saito, T., Maejima, Y., Hsu, C. P. Nomura, M., Egashira, K., Levine, B., Sadoshima, J. 2016. Drp1-dependent mitochondrial autophagy plays a protective role against pressure-overload-induced mitochondrial dysfunction and heart failure. Circulation 133, 1249-1263. Shore, G. C. 2009. Apoptosis: it's BAK to VDAC. EMBO reports 10, 1311-1313. Shoshan-Barmatz, V., Gincel, D. 2003. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys 39, 279-92. Srere, P. A. 1974. Controls of citrate synthase activity. Life sciences 15, 1695-1710. Suissa, M., Suda, K., Schatz, G. 1984. Isolation of the nuclear yeast genes for citrate synthase and fifteen other mitochondrial proteins by a new screening method. EMBO J 3, 1773-1781. Tang, C. H., Lee, T. H. 2011. Ion­deficient environment induces the expression of basolateral chloride channel, ClC­3­like protein, in gill mitochondrion­rich cells for chloride uptake of the tilapia, Oreochromis mossambicus. Physiol Biochem Zool 84, 54-67 Tangmansakulchai, K., Abubakar, Z., Kitiyanant, N., Suwanjang, W., Leepiyasakulchai, C., Govitrapong, P., Chetsawang, B. 2016. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion. Mitochondrion 30, 151-161. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yoshikawa, S. 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272, 1136-1144. Wallace, D. C. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407. Williams, R. S., Salmons, S., Newsholme, E. A., Kaufman, R. E., Mellor, J. 1986. Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem 261, 376-380. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R. C., Spiegelman, B. M. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124. Xiao, A., Gan, X., Chen, R., Ren, Y., Yu, H., You, C. 2017. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells. Biochem Biophys Res Commun 483, 765-771. Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Jie Fei, M., Peters Libeu, C., Mizushima, T., Yamaguchi, H., Tomizaki, T., Tsukihara, T. 1998. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 1723-1729. Zerai, D. B., Fitzsimmons, K. M., Collier, R. J. 2010. Transcriptional response of delta-9-desaturase gene to acute and chronic cold stress in Nile tilapia, Oreochromis niloticus. J World Aquacult Soc 41, 800-806. Zizi, M., Byrd, C., Boxus, R., Colombini, M. 1998. The voltage-gating process of the voltage-dependent anion channel is sensitive to ion flow. Biophys J 75, 704-713. 劉宗政。(2016)。低溫逆境引發淡水與海水馴化之虱目魚 (Chanos chanos) 肝臟有氧代謝變化。國立中興大學生命科學系碩士論文。台中。台灣。 陳柏翰。(2016)。不同程度之低溫誘導淡、海水恆河稻田魚 (Oryzias dancena) 肝臟粒線體生源之比較。國立中興大學生命科學系碩士論文。台中。台灣。
摘要: 溫度是重要的非生物性影響因子,會調節生物體內各層面的機能。當生物體面臨低溫環境時,對於能量的需求會發生改變。粒線體是一動態胞器,且為細胞主要的能量來源。當生物體受到刺激時,粒線體可藉由動態平衡或生源來增加魚隻面臨生理變化時所需的能量。因此,本論文將探討淡水與海水馴養的恆河稻田魚 (Oryzias dancena) 在面臨低溫刺激時,對魚隻肝臟粒線體的動態平衡與生源情況之影響。在粒線體動態平衡實驗中發現,在淡水組15 °C低溫刺激下Dynamin-related protein 1 (Drp-1) 蛋白在第七天時會有顯著性的下降,而海水組無論是18 °C或15 °C低溫刺激Drp-1蛋白都在2小時有顯著性的增加,並在12小時之後回復至正常水平;而粒線體DNA (mtDNA) 與Voltage-dependent anion-selective channel 1 (VDAC1) 在四組條件下都沒有顯著性變化,表示粒線體分裂速度發生變化,但是含量未發生改變。在低溫對cytochrome c oxidase (COX) 蛋白表現之影響實驗中可以發現,淡水組18 °C 或15 °C低溫刺激都不影響COX1蛋白含量;海水組18 °C則在2小時會有顯著下降,並於12小時回復至正常水平,而海水組15 °C在24小時後顯著下降。同時,COX4蛋白質表現量在四組條件下都有增加,因此發現COX的次單元 (COX1與COX4) 在面臨低溫時會有不一致的表現情形。此外,citrate synthase (CS) 蛋白表現在淡水組18 °C低溫刺激下無顯著性變化,而淡水組15 °C以及海水18 °C組與15 °C組的表現皆有增加。綜合以上結果,淡水組與海水組恆河稻田魚在面臨低溫時,淡水組可能藉由減少粒線體分裂並增加基質中的CS蛋白質含量來供應魚隻面臨15 °C低溫時所需的能量;海水組則可能在一開始接觸低溫時發生粒線體的分裂現象造成粒線體生源反應較為緩慢。
Environmental temperature is a major abiotic factor that affects different modulations in many aspects of the organisms. When facing low temperature, energy requirement for compensation was needed. Mitochondria is a well-known energy support organelle in the cell, and its morphological dynamic constantly changes. The status of mitochondria is modulated by the dynamic of morphological changes when cell is under stimulation. Changes in mitochondrial morphology and biogenesis can increase the energy supply for physiological changes in fish. In this study, it was hypothesized that different low-temperatures induced changes in mitochondrial dynamics and biogenesis in livers of freshwater (FW)- and seawater (SW)-acclimated Indian medaka (Oryzias dancena). In the results of investigating mitochondrial dynamics, Dynamin-related protein 1 (Drp-1) protein significantly decreased at 7th day in FW group at 15 °C, while increased at 2nd hour and restored to originally normal level at 12th hour in the SW group at 18 °C and 15 °C. The results of mtDNA contents together with the voltage-dependent anion-selective channel 1 (VDAC1) expressions that were not affected in all conditions revealed that mitochondria might change its dynamic but not the content. Low temperature resulted in different patterns of cytochrome c oxidase (COX) subunit expression. COX 1 was not affected in the FW group at 18°C and 15°C, while the SW group increased COX1 expression at the 2nd hour, restored to originally normal level at 12th hour at 18 °C, and decreased at 24th hour at 15 °C. However, COX4 protein abundance increased in the all conditions. The expressions of citrate synthase (CS) were significantly increased except that in the FW group at 18 °C. In summary, when facing low temperature, in the FW group, mitochondrial fragmentation was reduced and increased the expression of CS in the matrix to supply energy at 15 °C. In the SW group, however, fragmentation of mitochondria might delay the occurrence of mitochondrial biogenesis.
文章公開時間: 2021-08-14
Appears in Collections:生命科學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.