Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97723
標題: 無菌冰花小苗最適生長條件與外源性肌醇對小苗鹽耐受性之影響
Establishment of optimal growth condition and the effects of exogenous myo-inositol on salt tolerance in seedlings of ice plant (Mesembryanthemum crystallinum L.)
作者: 李承勳
Cheng-Hsun Li
關鍵字: 冰花
肌醇
鹽逆境
肌醇運輸蛋白
ice plant
myo-inositol
salt tolerance
inositol transporter
引用: 李佳哲 (2015) 活性氧累積與抗氧化酵素系統參與耐鹽植物冰花耐鹽相關機制。中興大學生命科學系學士論文 Abd-El Baki, G.K., Siefritz, F., Man, H.-M., Weiner, H., Kaldenhoff, R. and Kaiser, W.N. (2000). Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 23: 515-521. Adams, P., Nelson, D.E., Yamada, S., Chmara, W., Jensen, R.G., Bohnert, H.J. and Griffiths, H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138: 171-190. Agarie, S., Kawaguchi, A., Kodera, A., Sunagawa, H., Kojima, H., Nose, A., and Nakahara, T. (2009). Potential of the common ice plant, Mesembryanthemum crystallinum as a new high-functional food as evaluated by polyol accumulation. Plant Prod. Sci. 12: 37-46. Ahmad, V.U., Ali, Z., Ali, M.S., Zahid, M. and Tareen, R.B. (1998). Brahol: A new derivative of allo-inositol from Stocksia brahuica. Nat. Prod. Sci. 4: 170-173. Ali, G., Srivastava, P.S. and Iqbal, M. (1999). Proline accumulation, protein pattern and photosynthesis in Bacopa monniera regenerants grown under NaCl stress. Biol. Plant. 42: 89-95. Anderson, A.B., MacDonald, D.L. and Fischer, H.O.L. (1952). The structure of pinitol. J. Am. Chem. Soc. 74: 1479-1480. Antony, E., Taybi, T., Courbot, M., Mugford, S.T., Smith, J.A.C. and Borland, A.M. (2008). Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple). J. Exp. Bot. 59: 1895-1908. Asada, K. (1992). Ascorbate peroxidase – a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85: 235-241. Bindschedler, L.V., Tuerck, J., Maunders, M., Ruel. K., Petit-Conil, M., Danoun, S., Boudet, A.-M., Joseleau, J.-P. and Bolwell, G.P. (2007). Modification of hemicellulose content by antisense down-regulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability. Phytochemistry 68: 2635-2648. Bohnert, H.J. and Cushman, J.C. (2000). The ice plant cometh: lessons in abiotic stress tolerance. J. Plant Growth Regul. 19: 334-346. Bowler, C., Van Montagu, M. and Inzé, D. (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Plant Biol. 43: 83-116. Boyer, J.S. (1982). Plant productivity and environment. Science 218: 443-448. Chauhan, S., Forsthoefel, N., Ran, Y., Quigley, F., Nelson, D.E. and Bohnert, H.J. (2000). Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J. 24: 511-522. Chen, L.-Q., Cheung, L.S., Feng, L., Tanner, W. and Frommer, W.B. (2015). Transport of sugars. Annu. Rev. Biochem. 84: 865-894. Chiang, C.-P., Yim, W.C., Sun, Y.-H., Ohnishi, M., Mimura, T., Cushman, J.C. and Yen, H.E. (2016). Identification of ice plant (Mesembryanthemum crystallinum L.) microRNAs using RNA-seq and their putative roles in high salinity responses in seedlings. Front. Plant Sci. 7: 1143. Czarnocka, W. and Karpiński, S. (2018). Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. https://doi.org/10.1016/j.freeradbiomed.2018.01.011 Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D. and Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57: 779-795. Dat, J.S., Lopez-Delgado, H., Foyer, C.H. and Scoot, I.M. (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116: 1351-1357. Demidchik, V. and Tester, M. (2002). Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol. 128: 379-387. Díaz, M., González, A., Castro-Gamboa, I., Gonzalez, D. and Rossini, C. (2008). First record of L-quebrachitol in Allophylus edulis (Sapindaceae). Carbohydr. Res. 343: 2699-2700. Dittrich, P. and Brandl, A. (1987). Revision of the pathway of D-pinitol formation in Leguminosae. Phytochemistry 26: 1925-1926. Dixon, D.P., Cummins, I., Cole, D.J. and Edwards, R. (1998). Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1: 258-266. Dotzauer, D., Wolfenstetter, S., Eibert, D., Schneider, S., Dietrich, P. and Sauer, N. (2010). Novel PSI domains in plant and animal H+-inositol symporters. Traffic 11: 767-781. Endringer, D.C., Pezzuto, J.M. and Braga, F.C. (2009). NF-κB inhibitory activity of cyclitols isolated from Hancornia speciose. Phytomedicine 16: 1064-1069. Foyer, C.H. and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155: 2-18. Gallagher, R.T (1975). (+)-Pinpollitol: A di-O-methyl D-(+)-chiro-inositol from Pinus radiata. Phytochemistry 14: 755-757. Garg, A.K., Kim, J.-K., Owens, T.G., Ranwala, A.P., Do Choi, Y., Kochian, L.V. and Wu, R.J. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. U.S.A. 99: 15898-15903. Gill, S.S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930. Guo, C. and Oosterhuis, D.M. (1995). Pinitol occurrence in soybean plants as affected by temperature and plant growth regulators. J. Exp. Bot. 46: 249-253. Hare, P.D., Cress, W.A. and Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535-553. Horie, T., Costa, A., Kim, T.H., Han, M.J., Horie, R., Leung, H.-Y., Miyao, A., Hirochika, H., An, G. and Schroeder, J.I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J. 26: 3003-3014. Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R.G. and Bohnert, H.J. (1996). Coordinate transcriptional induction of myo‐inositol metabolism during environmental stress. Plant J. 9: 537-548. Joshi, R., Ramanarao, M.V. and Baisakh, N. (2013). Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol. Biochem. 65: 61-66. Kanter, U., Usadel, B., Guerineau, F., Li, Y., Pauly, M. and Tenhaken, R. (2005). The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221: 243-254. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. Kaya, C., Sonmez, O., Aydemir, S., Ashraf, M. and Dikilitas, M. (2013). Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). J. Plant Interact. 8: 234-241. Khan, M.A., Ungar, I.A. and Showalter, A.M. (1999). Effects of salinity on growth, ion content, and osmotic relations in Halopyrum mucronatum (L.) Stapf. J. Plant Nutr. 22: 191-204. Khan, M.A., Ungar, I.A. and Showalter, A.M. (2000). Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun. Soil Sci. Plant Anal. 31: 17-18. Kotiguda, G., Peterbauer, T. and Mulimani, V.H. (2006). Isolation and structural analysis of ajugose from Vigna mungo L.. Carbohydr. Res. 341: 2156-2160. Kozlov, G., Perreault, A., Schrag, J.D., Park, M., Cygler, M., Gehring, K. and Ekiel, I. (2004). Insights into function of PSI domains from structure of the Met receptor PSI domain. Biochem. Biophys. Res. Commun. 321: 234-240. Krishnamoorthy, P., Sanchez-Rodriguez, C., Heilmann, I. and Persson, S. (2014). Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. Ann. Bot. 114: 1049-1057. Kronzucker, H.J. and Britto, D.T. (2011). Sodium transport in plants: a critical review. New Phytol. 189: 54-81. Kruk, J., Holländer-Czytko, H., Oettmeier, W. and Trebst, A. (2005). Tocopherol as singlet oxygen scavenger in photosystem II. J. Plant Physiol. 162: 749-757. Kusuda, H., Koga, W., Kusano, M., Oikawa, A., Saito, K., Hirai, M.Y. and Yoshida, K.T. (2015). Ectopic expression of myo-inositol 3-phosphate synthase induces a wide range of metabolic changes and confers salt tolerance in rice. Plant Sci. 232: 49-56. Kwon, H.M., Yamauchi, A., Uchida, S., Preston, A.S., Garcia-Perez, A., Burg, M.B. and Handler, J.S. (1992). Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J. Biol. Chem. 267: 6297-6301. Lahuta, L.B., Pluskota, W.E., Stelmaszewska, J. and Szablińska, J. (2014). Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.). J. Plant Physiol. 171: 1306-1314. Lázaro, J.J., Jiménez, A., Camejo, D., Martí, M.C., Lázaro-Payo, A., Barranco-Medina, S. and Sevilla, F. (2013). Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. Front. Plant Sci. 4: 460. Liphschitz, N. and Waisel, Y. (1974). Existence of salt glands in various genera of the Gramineae. New Phytol. 73: 507-513. Loewus, F.A. and Loewus, M.W. (1983). Myo-inositol: its biosynthesis and metabolism. Annu. Rev. Plant Physiol. 34: 137-161. Lorence, A., Chevone, B.I., Mendes, P. and Nessler, C.L. (2004). Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134: 1200-1205. Maathuis, F.J.M. (2014). Sodium in plants: perception, signalling, and regulation of sodium fluxes. J. Exp. Bot. 65: 849-858. Mahajan, S., Pandey, G.K. and Tuteja, N. (2008). Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch. Biochem. Biophys. 471: 146-158. Majumder, A.L., Johnson, M.D. and Henry, S.A. (1997). 1L-myo-inositol-1-phosphate synthase. Biochim. Biophys. Acta, Lipids and Lipid Metabolism 1348: 245-256. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F. and Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61: 4197-4220. Michalczuk, L. and Bandurski, R.S. (1982). Enzymic synthesis of 1-O-indol-3-ylacetyl-β-D-glucose and indol-3-ylacetyl-myo-inositol. Biochem. J. 207: 273-281. Miller, G., Suzuki, N., Ciftci-Yilmaz, S. and Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33: 453-467. Moradi, F. and Ismail, A.M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99: 1161-1173. Morales, M.A., Sánchez-Blanco, M.J., Olmos, E., Torrecillas, A. and Alarcon, J.J. (1998). Changes in the growth, leaf water relations and cell ultrastructure in Argyranthemum coronopifolium plants under saline conditions. J. Plant Physiol. 153: 174-180. Munns, R., James, R.A., Xu, B., Athman, A., Conn, S.J., Jordans, C., Byrt, C.S., Hare, R.A., Tyerman, S.D. and Tester, M. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 30: 360-366. Murguia, J.R., Belles, J.M. and Serrano, R. (1995). A salt-sensitive 3'(2'), 5'-bisphosphate nucleotidase involved in sulfate activation. Science 267: 232-234. Nelson, D.E., Koukoumanos, M. and Bohnert, H.J. (1999). Myo-inositol-dependent sodium uptake in ice plant. Plant Physiol. 119: 165-172. Nelson, D.E., Rammesmayer, G. and Bohnert, H.J. (1998). Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10: 753-764. Nishizawa, A., Yabuta, Y. and Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147: 1251-1263. Noctor, G. and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49: 249-279. Ober, E.S. and Sharp, R.E. (1994). Proline accumulation in maize (Zea mays L.) primary roots at low water potentials (I. Requirement for increased levels of abscisic acid). Plant Physiol. 105: 981-987. Pastori, G.M. and Foyer, C.H. (2002). Common components, networks, and pathways of cross-tolerance to stress. The central role of 'redox' and abscisic acid-mediated controls. Plant Physiol. 129: 460-468. Paul, M.J. and Cockburn, W. (1989). Pinitol, a compatible solute in Mesembryanthemum crystallinum L.? J. Exp. Bot. 40: 1093-1098. Peterbauer, T., Karner, U., Mucha, J., Mach, L., Jones, D.A., Hedley, C.L. and Richter, A. (2003). Enzymatic control of the accumulation of verbascose in pea seeds. Plant Cell Environ. 26: 1385-1391. Poustini, K. and Siosemardeh, A. (2004). Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res. 85: 125-133. Prasad, T.K., Anderson, M.D., Martin, B.A. and Stewart, C.R. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65-74. Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., Shang, M., Chen, S., Pardo, J.M. and Guo, Y. (2007). SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19: 1415-1431. Raboy, V., Gerbasi, P.F., Young, K.A., Stoneberg, S.D., Pickett, S.G., Bauman, A.T., Murthy, P.P.N., Sheridan, W.F. and Ertl, D.S. (2000). Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol. 124: 355-368. Rubio, F., Gassmann, W. and Schroeder, J.I. (1995). Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270: 1660-1663. Rubio, F., Schwarz, M., Gassmann, W. and Schroeder, J.I. (1999). Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. J. Biol. Chem. 274: 6839-6847. Rus, A., Lee, B.-H., Muñoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.-K., Bressan, R.A. and Hasegawa, P.M. (2004). AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 136: 2500-2511. Salvi, P., Kamble, N.U. and Majee, M. (2017). Stress-inducible galactinol synthase of chickpea (CaGolS) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation. Plant Cell Physiol. 59: 155-166. Schachtman, D.P. and Schroeder, J.I. (1994). Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370: 6491. Schilling, N. (1976). Distribution of L-(+)-bornesitol in the Gentianaceae and Menyanthaceae. Phytochemistry 15: 824-826. Schneider, S. (2015). Inositol transport proteins. FEBS Lett. 589: 1049-1058. Schneider, S., Beyhl, D., Hedrich, R. and Sauer, N. (2008). Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized transporter for myo-inositol. Plant Cell 20: 1073-1087. Schneider, S., Schneidereit, A., Konrad, K.R., Hajirezaei, M.-R., Gramann, M., Hedrich, R. and Sauer, N. (2006). Arabidopsis INOSITOL TRANSPORTER4 mediates high-affinity H+ symport of myoinositol across the plasma membrane. Plant Physiol. 141: 565-577. Schneider, S., Schneidereit, A., Udvardi, P., Hammes, U., Gramann, M., Dietrich, P. and Sauer, N. (2007). Arabidopsis INOSITOL TRANSPORTER2 mediates H+ symport of different inositol epimers and derivatives across the plasma membrane. Plant Physiol. 145: 1395-1407. Seckin, B., Sekmen, A.H. and Türkan, I. (2009). An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J. Plant Growth Regul. 28: 12-20. Sengupta, S., Mukherjee, S., Basak, P. and Majumder, A.L. (2015). Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 6: 656. Sengupta, S., Patra, B., Ray, S. and Majumder, A.L. (2008). Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb.(Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ. 31: 1442-1459. Shen, B.O., Jensen, R.G. and Bohnert, H.J. (1997). Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113: 1177-1183. Sheveleva, E., Chmara, W., Bohnert, H.J. and Jensen, R.G. (1997). Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L.. Plant Physiol. 115: 1211-1219. Sheveleva, E.V., Marquez, S., Chmara, W., Zegeer, A., Jensen, R.G. and Bohnert, H.J. (1998). Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco: high amounts of sorbitol lead to necrotic lesions. Plant Physiol. 117: 831-839. Shi, H., Ishitani, M., Kim, C. and Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. U.S.A. 97: 6896-6901. Shi, H., Lee, B.-H., Wu, S.-J. and Zhu, J.-K. (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21: 81-85. Sivakumar, S. and Subramanian, S.P. (2009). Pancreatic tissue protective nature of D-Pinitol studied in streptozotocin-mediated oxidative stress in experimental diabetic rats. Eur. J. Pharmacol. 622: 65-70. Soussi, M., Ocaña, A. and Lluch, C. (1998). Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J. Exp. Bot. 49: 1329-1337. Streeter, J.G. (1985). Identification and distribution of ononitol in nodules of Pisum sativum and Glycine max. Phytochemistry 24: 174-176. Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W.-Y., Leung, H.-Y., Hattori, K., Konomi, M., Osumi, M., Yamagami, M., Schroeder, J.I. and Uozumi, M. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44: 928-938. Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2002). Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417-426. Tan, J., Wang, C., Xiang, B., Han, R. and Guo, Z. (2013). Hydrogen peroxide and nitric oxide mediated cold-and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant Cell Environ. 36: 288-299. Tiburcio, A.F., Campos, J.L., Figueras, X. and Besford, R.T. (1993). Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul. 12: 331-340. Torabinejad, J., Donahue, J.L., Gunesekera, B.N., Allen-Daniels, M.J. and Gillaspy, G.E. (2009). VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol. 150: 951-961. Uldry, M., Ibberson, M., Horisberger, J.-D., Chatton, J.-Y., Riederer, B.M. and Thorens, B. (2001). Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J. 20: 4467-4477. Vaidyanathan, H., Sivakumar, P., Chakrabarty, R. and Thomas, G. (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci. 165: 1411-1418. Valluru, R. and Van den Ende, E. (2011). Myo-inositol and beyond–emerging networks under stress. Plant Sci. 181: 387-400. Venkatesan, A. and Chellappan, K.P. (1998). Accumulation of proline and glycine betaine in Ipomoea pes-caprae induced by NaCl. Biol. Plant. 41: 271-276. Vernon, D.M. and Bohnert, H.J. (1992). A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J. 11: 2077-2085. Wei, W., Bilsborrow, P.E., Hooley, P., Fincham, D.A., Lombi, E. and Forster, B.P. (2003). Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 250: 183-191. Williams, L.E., Lemoine, R. and Sauer, N. (2000). Sugar transporters in higher plants–a diversity of roles and complex regulation. Trends Plant Sci. 5: 283-290. Williamson, J.D., Jennings, D.B., Guo, W.-W., Pharr, D.M. and Ehrenshaft, M. (2002). Sugar alcohols, salt stress, and fungal resistance: polyols—multifunctional plant protection? J. Am. Soc. Hortic. Sci. 127: 467-473. Xu, W.-F., Shi, W.-M., Ueda, A. and Takabe, T. (2008). Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 18: 486-495. Yadav, S., Irfan, M., Ahmad, A. and Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: a review. J. Environ. Biol. 32: 667-685. Zhao, F.-Q. and Keating, A.F. (2007). Functional properties and genomics of glucose transporters. Curr. Genomics 8: 113-128. Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273. Zhu, J.-K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6: 441-445.
摘要: 土壤環境中鹽類含量過高會導致植物處於鹽逆境與滲透逆境,甚至進一步產生氧化逆境。肌醇(inositol)為一相容質,於水份含量相關之鹽、乾旱及低溫逆境下會大量累積於細胞質以協助植物適應逆境,此外肌醇衍生物也參與植物適應逆境的過程,例如pinitol、galactinol、raffinose與ascorbate等,除了具有相容質之功能外,也具有清除ROS (reactive oxygen species)之能力。文獻中指出,耐鹽模式植物冰花(Mesembryanthemum crystallinum)於鹽逆境下可藉由肌醇運輸蛋白(inositol transporter; INT) McINT4.1/MITR1與McINT4.2/MITR2使鈉離子於植物體內重新分佈,以降低根部鈉離子累積,為冰花適應鹽逆境的重要機制之一。經由冰花轉錄體搜尋出7個INT基因,以親緣關係和序列相似性依照阿拉伯芥INT家族重新命名為:McINT1.1、McINT1.2、McINT2、McINT3、McINT4.1、McINT4.2與McINT4.3。本論文主要探討外源性肌醇對鹽逆境下冰花小苗生長、鈉鉀離子含量及肌醇運輸機制以及McINT家族表現量差異。依據本實驗室先前培養無菌冰花小苗的條件,冰花小苗容易有玻璃質化的現象,離開無菌環境後容易脫水造成實驗誤差,故本論文測試了培養基的組成與培養條件,發現藉由通氣可降低小苗玻璃質化的現象,成功獲得健康且均質化的小苗進行後續實驗。此外,本實驗室先前處理冰花小苗的方式有小苗處理不完全與使小苗處於淹水逆境之疑慮,而本論文也改以直立浸泡的方式解決以上問題,並且可以使同一培養皿內之冰花小苗同時進行多種處理,以降低可能因培養於不同培養皿所造成的誤差。本論文觀察到鹽逆境下添加外源性肌醇可以減緩冰花小苗脫水的現象,而檢測McINT表現量,發現於不同溶液處理下,地上部與地下部McINT有不同的表現趨勢。地上部所有McINT皆受到鹽逆境而表現量上升,其中地上部McINT3、McINT4.2與McINT4.3受到肌醇負調控有表現量下降的趨勢,而於地下部,鹽逆境下無論有無外源性肌醇,McINT皆有表現量上升的趨勢,且沒有任何McINT受到肌醇負調控,顯示不同群的McINT有特定的功能與調控機制。於追蹤外源性肌醇與分析鈉離子累積之實驗中發現,冰花小苗具有吸收環境中微量肌醇的能力,且鈉離子可以促進外源性肌醇之吸收,於長時間鹽逆境下,添加外源性肌醇可以降低根部鈉鉀比值。植物於鹽逆境下會導致氧化逆境的發生,而本論文發現冰花小苗於各處理下其ROS的累積程度並沒有明顯的差異,此結果可能因背景值過高而需要進一步進行定量分析。綜合上述,本論文初步鑑定了冰花小苗McINTs之功能及參與調控機制,冰花小苗可藉由增加基因表現或蛋白活性促進鈉離子累積於地上部並降低地下部的鈉鉀比值,以增加小苗對鹽逆境的耐受性。
Plants develop many mechanisms to adapt to the change of environment, but if the environment becomes more extreme, plants fail to respond and result in the stresses. Stresses can be distinguished into two classes, one is the biotic stress that is involved in interaction with other organisms, and the other is the abiotic stress caused by the change of the environmental factors. Excessive salt content in the soil environment will cause plants encountering salt, osmotic and even oxidative stress. Inositol is a compatible solute that accumulates in the cytosol and organelles to facilitate plant to adapt to water-deficit related stresses. Inositol derivatives such as pinitol, galactinol, raffinose and ascorbate are also involved in the processes of stress adaptation. These derivatives are also compatible solutes and have the ability to scavenge the ROS (reactive oxygen species). Halophyte ice plant (Mesembryanthemum crystallinum) is a model organism to study plant salt tolerance. Ice plant can redistribute the sodium ions in the plant under the salt stress via inositol transporter (INT) McINT4.1/MITR1 and McINT4.2/MITR2. It is one of the vital mechanisms for ice plant to adapt to salt stress. We identified seven INT genes form ice plant transcriptome and, according to the classification of Arabidopsis thaliana AtINT family, renamed as McINT1.1, McINT1.2, McINT2, McINT3, McINT4.1, McINT4.2 and McINT4.3. According to the previous culture condition of the ice plant seedlings, the seedlings tended to develop vitrification in the sealed condition. To solve the problem, we modified the compositions of the culture medium and culture conditions and successfully obtained healthy and uniform seedlings. Furthermore, the previous method of seedling treatment has the doubts about the incomplete treatment of roots and seedlings were under flooding stress. Therefore, a vertical immersion of seedlings was used to avoid the problem described. I found that the supply of exogenous myo-inositol can reduce the dehydration effects of salt-stressed seedlings. Differential expression analysis of McINTs showed that all McINTs were induced by salt stress at the shoot, and the expressions of McINT3, McINT4.2 and McINT4.3 were down-regulated by inositol. In root, the expression of all McINTs also induced under salt stress with or without exogenous inositol supply, and none of McINTs was down-regulated by inositol. This result indicated that different McINTs might have different functions and regulation in ice plant seedlings. Analyses of the uptake of exogenous inositol and accumulation of sodium ions revealed that ice plant seedlings had intrinsic ability to take up a trace amount of external inositol and the presence of sodium could facilitate inositol uptake. Under prolong salt stress, an exogenous supply of inositol decreased the Na/K ratio in roots. Oxidative stress is usually induced when plant suffer in salt stress. Ice plant seedlings have no significant differences in ROS accumulation by salt treatments. Quantification of ROS is needed for further confirmation. In conclusion, I identified the possible functions and regulatory mechanisms of ice plant McINT. Ice plant seedlings can accumulate more sodium in shoot and decrease the Na/K ratio in the root via induced specific McINT gene expression or activated transport activity of specific member of McINT to enhance the tolerance of salt stress.
URI: http://hdl.handle.net/11455/97723
文章公開時間: 2021-08-30
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.