Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97728
標題: 第一部分:探討人類第二型抗酶之關鍵泛素化位點 第二部分:探討人類粒線體NAD(P)+-依賴型蘋果酸酶在肺癌細胞A549重編程之研究
Part 1:Investigation of the Ubiquitination Sites on Human Antizyme 2 Part 2:Study of Human Mitochondrial NAD(P)+-Dependent Malic Enzyme Involving in the Metabolic Reprogramming of A549 Lung Cancer Cells
作者: 楊皓評
Hao-Ping Yang
關鍵字: 抗酶
泛素化
蘋果酸酶
代謝重編程
肺癌
Antizyme
Ubiquitanation
Malic Enzyme
Metabolism Reprogramming
Lung Cancer
引用: Almrud JJ, Oliveira MA, Kern AD, Grishin NV, Phillips MA, Hackert ML (2000) Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding. J Mol Biol 295: 7-16 Auvinen M, Paasinen A, Andersson LC, Holtta E (1992) Ornithine decarboxylase activity is critical for cell transformation. Nature 360: 355-8 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-54 Casero RA, Jr., Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6: 373-90 Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60: 1394-406 Coleman CS, Stanley BA, Viswanath R, Pegg AE (1994) Rapid exchange of subunits of mammalian ornithine decarboxylase. Journal of Biological Chemistry 269: 3155-3158 Daigle ND, Carpentier GA, Frenette-Cotton R, Simard MG, Lefoll MH, Noel M, Caron L, Noel J, Isenring P (2009) Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport. J Cell Physiol 220: 680-9 Gandre S, Bercovich Z, Kahana C (2002) Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. European journal of biochemistry / FEBS 269: 1316-22 Hayashi S, Murakami Y (1995) Rapid and regulated degradation of ornithine decarboxylase. Biochem J 306 ( Pt 1): 1-10 Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci U S A 73: 1858-62 Ivanov IP, Gesteland RF, Atkins JF (1998) A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics 52: 119-29 Jackson LK, Brooks HB, Osterman AL, Goldsmith EJ, Phillips MA (2000) Altering the reaction specificity of eukaryotic ornithine decarboxylase. Biochemistry 39: 11247-11257 Keren-Paz A, Bercovich Z, Porat Z, Erez O, Brener O, Kahana C (2006) Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 25: 5163-5172 Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80: 51-60 McCann PP, Pegg AE (1992) Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther 54: 195-215 Nilsson J, Grahn B, Heby O (2000) Antizyme inhibitor is rapidly induced in growth-stimulated mouse fibroblasts and releases ornithine decarboxylase from antizyme suppression. Biochem J 346 Pt 3: 699-704 Osterman AL, Brooks HB, Jackson L, Abbott JJ, Phillips MA (1999) Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps. Biochemistry 38: 11814-11826 Pegg AE (2006) Regulation of ornithine decarboxylase. Journal of Biological Chemistry 281: 14529-14532 Shantz LM, Coleman CS, Pegg AE (1996) Expression of an ornithine decarboxylase dominant-negative mutant reverses eukaryotic initiation factor 4E-induced cell transformation. Cancer Res 56: 5136-40 Snapir Z, Keren-Paz A, Bercovich Z, Kahana C (2009) Antizyme 3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation. Biochem J 419: 99-103, 1 p following 103 Varland S, Osberg C, Arnesen T (2015) N‐terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics 15: 2385-2401 Bradford, M. M. 1976. 'A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding', Anal Biochem, 72: 248-54. Butta, Nora, Consuelo González‐Manchón, Elena G Arias‐Salgado, Matilde S Ayuso, and Roberto Parrilla. 2001. 'Cloning and functional characterization of the 5′ flanking region of the human mitochondrial malic enzyme gene: Regulatory role of Sp1 and AP‐2', European journal of biochemistry, 268: 3017-27. Chang, Yung-Lung, Hong-Wei Gao, Chien-Ping Chiang, Wei-Ming Wang, Shih-Ming Huang, Chien-Fen Ku, Guang-Yaw Liu, and Hui-Chih Hung. 2015. 'Human Mitochondrial NAD (P)+–Dependent Malic Enzyme Participates in Cutaneous Melanoma Progression and Invasion', Journal of Investigative Dermatology, 135: 807-15. Cheng, Chiao-Pei, Li-Chun Huang, Yung-Lung Chang, Ching-Hsuan Hsieh, Shih-Ming Huang, and Dueng-Yuan Hueng. 2016. 'The mechanisms of malic enzyme 2 in the tumorigenesis of human gliomas', Oncotarget, 7: 41460. Consortium, International Cancer Genome. 2010. 'International network of cancer genome projects', Nature, 464: 993. Csanadi, Agnes, Claudia Kayser, Marcel Donauer, Vera Gumpp, Konrad Aumann, Justyna Rawluk, Antje Prasse, Axel zur Hausen, Sebastian Wiesemann, and Martin Werner. 2015. 'Prognostic value of malic enzyme and ATP-citrate lyase in non-small cell lung cancer of the young and the elderly', PLoS One, 10: e0126357. Dey, Prasenjit, Joelle Baddour, Florian Muller, Chia Chin Wu, Huamin Wang, Wen-Ting Liao, Zangdao Lan, Alina Chen, Tony Gutschner, and Yaan Kang. 2017. 'Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer', Nature, 542: 119. Frenkel, RENE. 1975. 'Regulation and physiological functions of malic enzymes.' in, Current topics in cellular regulation (Elsevier). Hanahan, Douglas, and Robert A Weinberg. 2011. 'Hallmarks of cancer: the next generation', Cell, 144: 646-74. Jiang, Peng, Wenjing Du, Anthony Mancuso, Kathryn E Wellen, and Xiaolu Yang. 2013. 'Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence', Nature, 493: 689. Loeber, G, AA Infante, I Maurerfogy, E Krystek, and MB Dworkin. 1991. 'Human NAD+-dependent mitochondrial malic enzyme.' In FASEB JOURNAL, A839-A39. FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998. Loeber, Gerhard, Mark B Dworkin, Anthony Infante, and Horst Ahorn. 1994. 'Characterization of cytosolic malic enzyme in human tumor cells', FEBS letters, 344: 181-86. Lu, Weiqin, Helene Pelicano, and Peng Huang. 2010. 'Cancer metabolism: is glutamine sweeter than glucose?', Cancer Cell, 18: 199-200. Medina, Miguel A. 2001. 'Glutamine and cancer', The Journal of nutrition, 131: 2539S-42S. Nagel, WO, RT Dauchy, and LA Sauer. 1980. 'Mitochondrial malic enzymes. An association between NAD (P)+-dependent malic enzyme and cell renewal in Sprague-Dawley rat tissues', Journal of Biological Chemistry, 255: 3849-54. Newsholme, EA, B Crabtree, and MSM Ardawi. 1985. 'The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells', Bioscience reports, 5: 393-400. Ochoa, Severo, Alan Mehler, and Arthur Kornberg. 1947. 'Reversible oxidative decarboxylation of malic acid', Journal of Biological Chemistry, 167: 871-72. Ren, Jian-Guo, Pankaj Seth, Peter Everett, Clary B Clish, and Vikas P Sukhatme. 2010. 'Induction of erythroid differentiation in human erythroleukemia cells by depletion of malic enzyme 2', PLoS One, 5: e12520. Semenza, Gregg L, Dmitri Artemov, Atul Bedi, Zaver Bhujwalla, Kelly Chiles, David Feldser, Erik Laughner, Rajani Ravi, Jonathan Simons, and Panthea Taghavi. 2001. 'The metabolism of tumours': 70 years later.' In The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity: Novartis Foundation Symposium 240, 251-64. Wiley Online Library. Stratton, Michael R, Peter J Campbell, and P Andrew Futreal. 2009. 'The cancer genome', Nature, 458: 719. Tatum, James L. 2006. 'Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy', International journal of radiation biology, 82: 699-757. Vander Heiden, Matthew G, Lewis C Cantley, and Craig B Thompson. 2009. 'Understanding the Warburg effect: the metabolic requirements of cell proliferation', Science, 324: 1029-33. Warburg, Otto. 1956. 'On the origin of cancer cells', Science, 123: 309-14. Wise, David R, and Craig B Thompson. 2010. 'Glutamine addiction: a new therapeutic target in cancer', Trends in biochemical sciences, 35: 427-33.
摘要: 鳥胺酸脫羧酶抗酶 (antizyme, AZ) 為一多元胺 (polyamine) 生成抑制蛋白,利用與鳥胺酸脫羧酶 (ornithine decarboxylase, ODC) 的高親和性,結合形成異源雙聚體 (heterodimer),抑制ODC催化之多元胺生合成。多元胺為帶正電的有機分子,藉由與遺傳物質或蛋白質結合,調控細胞生長、分化、凋亡及癌化轉形…等過程。而抗酶蛋白表現的多寡,也是多元胺影響基因表現的一個例子。當多元胺濃度過高時,會發生+1鹼基位移 (frameshift) 因而轉譯出具有功能的全長抗酶蛋白,可調控鳥胺酸脫羧酶被26S蛋白酶體 (proteasome) 降解。目前發現人類AZ共具有三種異構型 (isoform),皆能抑制ODC活性,並阻止細胞攝入多元胺,但在調節降解ODC方面,各異構型間的能力則是大不相同。與大部分蛋白質相同,AZ也是泛素依賴型 (ubiquitin-dependent) 的蛋白,即藉由泛素的標定,成為蛋白酶體降解之目標。本研究主要藉由定點突變及體外降解分析 (in vitro degradation),確認第二型鳥胺酸脫羧酶抗酶 (AZ2) 之主要泛素化位點 (ubiquitination site)。經由與各異構型AZ胺基酸做序列比較,總共有6個離胺酸 (Lysine, K) 擁有較高程度的保留性,分別是第40、75、89、116、129、141號離胺酸。在體外降解分析的結果中,以AZ2-K116A及AZ2-K141A所減少的降解程度略有差異,但在AZ2-K40A/K75A/K89A/K116A/K129A/K141A中,並沒有造成降解程度上的差異。結果顯示,在本實驗架構中,此6個高保留性的離胺酸,並非是AZ2泛素依賴型降解過程中,重要的泛素化位點。 癌細胞的代謝重置被認為是一個在腫瘤發展過程中相當重要的指標,而有氧糖解 (Warburg effect) 以及麩醯胺酸 (glutaminolysis) 代謝則被認為是腫瘤能持續獲得能量供給的兩個重要關鍵。因此,以腫瘤代謝為目標的治療策略,也在近年來被認為是一相當有潛力的研究方向。粒線體NAD(P)+-依賴型蘋果酸酶 (m-NAD(P)+-ME, ME2) 為一種氧化還原酶,能在粒線體中催化蘋果酸 (malate) 形成丙酮酸 (pyruvate),並且伴隨NAD(P)+還原成NAD(P)H。由於催化過程後的產物丙酮酸以及NADH可以做為細胞的能量代謝來源,因此在最近的研究中被認為是在腫瘤發展中的一個重要角色。為了瞭解ME2在癌症代謝重置上的角色,以及其對於能量相關代謝路徑的影響,實驗利用肺癌細胞株A549,並以RNA干擾技術降低ME2表現量後,比較在不同能量供給下,對於能量相關代謝路徑的影響。結果顯示,在肺癌細胞A459細胞株中,當降低ME2表現量後,即使在不同能量供給狀態下,皆可增加葡萄醣轉運蛋白的表現;而在缺乏葡萄醣的狀態下,則是會增強五碳醣磷酸路徑的強度;最後在缺乏麩醯胺酸情況下,則是可以看到細胞傾向增加將丙酮酸還原成乳酸的能力。
Antizyme (AZ) is a protein that can inhibit polyamine production via interacting with ornithine decarboxylase (ODC), an enzyme catalyzing a reaction that coverts ornithine to putrescine. Due to its high affinity toward ODC, AZ interacts with ODC to form heterodimer and then directly inhibits the enzyme activity of ODC. Polyamines are a group of organic molecules with positive charges. By interacting with DNA or proteins, it can regulate various biological functions, including cell proliferation and differentiation. Uncontrolled ODC enzyme activities lead to abnormal cell growth then tumorigenesis. Until now, three kinds of AZ isoforms have been identified. Like most proteins, AZ degradation follows an ubiquitin-dependent 26S proteasomal pathway. In our study, we used in vitro degradation assay to identify the ubiquitination sites within antizyme isoform 2 (AZ2). According to the sequence alignments, six conserved Lys residues were found within AZ2 protein among three AZ isoforms, including K40, K75, K89, K116, K129, K141. Our data indicated that AZ2-K116A and AZ2-K141A were slightly decreased in its degradation level as compared with AZ2-WT. However, AZ2-6M didn't show any difference in protein degradation. As a result, we conclude that these six conserved Lys residues are not the ubiquitination site when AZ2 possessed an ubiquitin-dependent degradation. Metabolism reprogramming has been thought as a quite important hallmark of tumor progression. Aerobic glycolysis (Warburg effect) and glutaminolysis also have been considered as two critical keys for tumor to receive energy supply continuously. Therefore, targeting tumor metabolism as therapeutic strategy is considered to be a potential research direction. The mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME, ME2) is an oxidoreductase which can catalyze the reversible oxidative decarboxylation of L-malate to pyruvate with simultaneous reduction of NAD(P)+ to NAD(P)H. Recent publishes suggests that ME2 plays an crucial role in tumorigenesis by providing pyruvate and NADH as the energy source. In order to understand the role of ME2 in the cancer metabolism reprogramming and how it participates in the energy-associated metabolism pathway, we use RNA interference (RNAi) to knockdown the expression level of ME2 and compare the effects of energy-related metabolic pathways under different conditions of energetic supplies. The results showed that in the lung cancer cell A459 cell line, when the ME2 expression was decreased, the glucose transporter expression was increased even in the different energy supply states. In the absence of glucose, the pentose phosphate pathway was enhanced. Finally, in the absence of glutamine, it can be seen that cells tend to increase the ability to reduce pyruvate to lactic acid.
URI: http://hdl.handle.net/11455/97728
文章公開時間: 2021-08-28
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.