Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97733
標題: 以次世代定序探討熱休克逆境下阿拉伯芥的miR160/ARF之調控機制
Using next generation sequencing to study the regulation mechanism of miR160/ARF under heat shock stress in Arabidopsis
作者: 梁益晨
Yi-Chen Liang
關鍵字: 阿拉伯芥
miR160
auxin response factor (ARF)
熱休克逆境
次世代定序
Arabidopsis
miR160
auxin response factor (ARF)
heat shock stress
next generation sequencing
引用: 參考文獻 張碧芳 (2004). 溫度對作物的影響及熱休克蛋白質的作用。植物重要防疫檢檢疫病害診斷鑑定技術研習會專刊 (三) 郭家嘉 (2015). 阿拉伯芥中miR160/Auxin response factor (ARF) 10、ARF16及ARF17調節熱逆境反應機制。國立台灣大學植物科學所碩士論文 Bartrina, I., Otto, E., Strnad, M., Werner, T., and Schmulling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant cell 23, 69-80. Bita, C.E., and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science 4, 273. Candat, A., Paszkiewicz, G., Neveu, M., Gautier, R., Logan, D.C., Avelange-Macherel, M.H., and Macherel, D. (2014). The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. The Plant cell 26, 3148-3166. Chen, X., Lin, S., Liu, Q., Huang, J., Zhang, W., Lin, J., Wang, Y., Ke, Y., and He, H. (2014a). Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et biophysica acta 1844, 818-828. Chen, X., Wang, Y., Lv, B., Li, J., Luo, L., Lu, S., Zhang, X., Ma, H., and Ming, F. (2014b). The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant & cell physiology 55, 604-619. Choi, K., Park, C., Lee, J., Oh, M., Noh, B., and Lee, I. (2007). Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development (Cambridge, England) 134, 1931-1941. Damodharan, S., Zhao, D., and Arazi, T. (2016). A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. The Plant journal : for cell and molecular biology 86, 458-471. Dello Ioio, R., Galinha, C., Fletcher, A.G., Grigg, S.P., Molnar, A., Willemsen, V., Scheres, B., Sabatini, S., Baulcombe, D., Maini, P.K., and Tsiantis, M. (2012). A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis. Current biology : CB 22, 1699-1704. Dickinson, P.J., Kumar, M., Martinho, C., Yoo, S.J., Lan, H., Artavanis, G., Charoensawan, V., Schottler, M.A., Bock, R., Jaeger, K.E., and Wigge, P.A. (2018). Chloroplast Signaling Gates Thermotolerance in Arabidopsis. Cell reports 22, 1657-1665. Ding, Y., Ma, Y., Liu, N., Xu, J., Hu, Q., Li, Y., Wu, Y., Xie, S., Zhu, L., Min, L., and Zhang, X. (2017). microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). The Plant journal : for cell and molecular biology 91, 977-994. Duan, L., Dietrich, D., Ng, C.H., Chan, P.M., Bhalerao, R., Bennett, M.J., and Dinneny, J.R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. The Plant cell 25, 324-341. Ellis, C.M., Nagpal, P., Young, J.C., Hagen, G., Guilfoyle, T.J., and Reed, J.W. (2005). AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development (Cambridge, England) 132, 4563-4574. Fang, Y., Xie, K., and Xiong, L. (2014). Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of experimental botany 65, 2119-2135. Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of plant research 124, 509-525. Goetz, M., Vivian-Smith, A., Johnson, S.D., and Koltunow, A.M. (2006). AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. The Plant cell 18, 1873-1886. Guan, Q., Lu, X., Zeng, H., Zhang, Y., and Zhu, J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. The Plant journal : for cell and molecular biology 74, 840-851. Gupta, R., and Chakrabarty, S.K. (2013). Gibberellic acid in plant: Still a mystery unresolved. Plant Signaling & Behavior 8. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., and Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences 14, 9643-9684. Hawkins, P.G., and Morris, K.V. (2008). RNA and transcriptional modulation of gene expression. Cell cycle (Georgetown, Tex.) 7, 602-607. He, C.Y., Cui, K., Zhang, J.G., Duan, A.G., and Zeng, Y.F. (2013). Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo. BMC plant biology 13, 119. He, L.H., Chen, J.Y., Kuang, J.F., and Lu, W.J. (2012). Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit. Journal of the science of food and agriculture 92, 1924-1930. Higashitani, A. (2013). High temperature injury and auxin biosynthesis in microsporogenesis. Frontiers in plant science 4, 47. Hu, J.Y., Zhou, Y., He, F., Dong, X., Liu, L.Y., Coupland, G., Turck, F., and de Meaux, J. (2014). miR824-Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in Arabidopsis. The Plant cell 26, 2024-2037. Huang, Y.C., Niu, C.Y., Yang, C.R., and Jinn, T.L. (2016). The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses. Plant physiology 172, 1182-1199. Hutvagner, G., and Simard, M.J. (2008). Argonaute proteins: key players in RNA silencing. Nature reviews. Molecular cell biology 9, 22-32. Kanno, Y., Oikawa, T., Chiba, Y., Ishimaru, Y., Shimizu, T., Sano, N., Koshiba, T., Kamiya, Y., Ueda, M., and Seo, M. (2016). AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature communications 7, 13245. Kant, S., Burch, D., Badenhorst, P., Palanisamy, R., Mason, J., and Spangenberg, G. (2015). Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.). PloS one 10, e0116349. Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., and Franklin, K.A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Current biology : CB 19, 408-413. Lee, H.J., Jung, J.H., Cortes Llorca, L., Kim, S.G., Lee, S., Baldwin, I.T., and Park, C.M. (2014a). FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nature communications 5, 5473. Lee, Y.S., Lee, D.Y., Cho, L.H., and An, G. (2014b). Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice (New York, N.Y.) 7, 31. Li, L., Zhang, Q., Pedmale, U.V., Nito, K., Fu, W., Lin, L., Hazen, S.P., and Chory, J. (2014). PIL1 participates in a negative feedback loop that regulates its own gene expression in response to shade. Molecular plant 7, 1582-1585. Li, S.B., Xie, Z.Z., Hu, C.G., and Zhang, J.Z. (2016). A Review of Auxin Response Factors (ARFs) in Plants. Frontiers in plant science 7, 47. Li, Z., Peng, J., Wen, X., and Guo, H. (2013). Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. The Plant cell 25, 3311-3328. Lim, S., Park, J., Lee, N., Jeong, J., Toh, S., Watanabe, A., Kim, J., Kang, H., Kim, D.H., Kawakami, N., and Choi, G. (2013). ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. The Plant cell 25, 4863-4878. Lin, J.S., Kuo, C.C., Yang, I.C., Tsai, W.A., Shen, Y.H., Lin, C.C., Liang, Y.C., Li, Y.C., Kuo, Y.W., King, Y.C., Lai, H.M., and Jeng, S.T. (2018). MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis. Frontiers in plant science 9, 68. Liu, N., Wu, S., Van Houten, J., Wang, Y., Ding, B., Fei, Z., Clarke, T.H., Reed, J.W., and van der Knaap, E. (2014). Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. Journal of experimental botany 65, 2507-2520. Liu, P., Zhang, C., Ma, J.Q., Zhang, L.Y., Yang, B., Tang, X.Y., Huang, L., Zhou, X.T., Lu, K., and Li, J.N. (2018). Genome-Wide Identification and Expression Profiling of Cytokinin Oxidase/Dehydrogenase (CKX) Genes Reveal Likely Roles in Pod Development and Stress Responses in Oilseed Rape (Brassica napus L.). Genes 9, 168 Liu, P.P., Montgomery, T.A., Fahlgren, N., Kasschau, K.D., Nonogaki, H., and Carrington, J.C. (2007). Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. The Plant journal : for cell and molecular biology 52, 133-146. Liu, W., Li, R.J., Han, T.T., Cai, W., Fu, Z.W., and Lu, Y.T. (2015). Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis. Plant physiology 168, 343-356. Liu, X., Dong, X., Liu, Z., Shi, Z., Jiang, Y., Qi, M., Xu, T., and Li, T. (2016). Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss. Plant molecular biology 92, 313-336. Liu, X., Zhang, H., Zhao, Y., Feng, Z., Li, Q., Yang, H.Q., Luan, S., Li, J., and He, Z.H. (2013). Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 110, 15485-15490. Mallory, A.C., Bartel, D.P., and Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. The Plant cell 17, 1360-1375. Mardis, E.R. (2008). Next-generation DNA sequencing methods. Annual review of genomics and human genetics 9, 387-402. Mathieu, A.S., Lutts, S., Vandoorne, B., Descamps, C., Perilleux, C., Dielen, V., Van Herck, J.C., and Quinet, M. (2014). High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation. Journal of plant physiology 171, 109-118. Maxam, A.M., and Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America 74, 560-564. Meehl, G.A., Arblaster, J.M., and Tebaldi, C. (2007). Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophysical Research Letters 34. Narusaka, Y., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant journal : for cell and molecular biology 34, 137-148. Noh, Y.S., and Amasino, R.M. (2003). PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. The Plant cell 15, 1671-1682. Olvera-Carrillo, Y., Campos, F., Reyes, J.L., Garciarrubio, A., and Covarrubias, A.A. (2010). Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant physiology 154, 373-390. Pérez, P., Alonso, A., Zita, G., Morcuende, R., and Martínez-Carrasco, R. (2011). Down-regulation of Rubisco activity under combined increases of CO2 and temperature minimized by changes in Rubisco kcat in wheat. Plant growth regulation v.65 no.3, 439-447. Prasch, C.M., and Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant physiology 162, 1849-1866. Richter, K., Haslbeck, M., and Buchner, J. (2010). The heat shock response: life on the verge of death. Molecular cell 40, 253-266. Rogers, K., and Chen, X. (2012). microRNA Biogenesis and Turnover in Plants. Cold Spring Harbor symposia on quantitative biology 77, 183-194. Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., Miyazawa, Y., Takahashi, H., Watanabe, M., and Higashitani, A. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences of the United States of America 107, 8569-8574. Salas-Munoz, S., Gomez-Anduro, G., Delgado-Sanchez, P., Rodriguez-Kessler, M., and Jimenez-Bremont, J.F. (2012). The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences 13, 10154-10175. Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74, 5463-5467. Shi, H., Chen, L., Ye, T., Liu, X., Ding, K., and Chan, Z. (2014). Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant physiology and biochemistry : PPB 82, 209-217. Shi, Z.H., Zhang, C., Xu, X.F., Zhu, J., Zhou, Q., Ma, L.J., Niu, J., and Yang, Z.N. (2015). Overexpression of AtTTP affects ARF17 expression and leads to male sterility in Arabidopsis. PloS one 10, e0117317. Shuai, P., Liang, D., Zhang, Z., Yin, W., and Xia, X. (2013). Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC genomics 14, 233. Sun, J., Qi, L., Li, Y., Chu, J., and Li, C. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS genetics 8, e1002594. Suzuki, N., Sejima, H., Tam, R., Schlauch, K., and Mittler, R. (2011). Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. The Plant journal : for cell and molecular biology 66, 844-851. Vogel, J.L., Parsell, D.A., and Lindquist, S. (1995). Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Current biology : CB 5, 306-317. Volkov, R.A., Panchuk, II, Mullineaux, P.M., and Schoffl, F. (2006). Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant molecular biology 61, 733-746. Wang, B., Xue, J.S., Yu, Y.H., Liu, S.Q., Zhang, J.X., Yao, X.Z., Liu, Z.X., Xu, X.F., and Yang, Z.N. (2017). Fine regulation of ARF17 for anther development and pollen formation. BMC plant biology 17, 243. Wang, J.W., Wang, L.J., Mao, Y.B., Cai, W.J., Xue, H.W., and Chen, X.Y. (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. The Plant cell 17, 2204-2216. Wang, Y., Wang, L., Zou, Y., Chen, L., Cai, Z., Zhang, S., Zhao, F., Tian, Y., Jiang, Q., Ferguson, B.J., Gresshoff, P.M., and Li, X. (2014). Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. The Plant cell 26, 4782-4801. Welch, W.J., and Suhan, J.P. (1985). Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. The Journal of cell biology 101, 1198-1211. Wilmoth, J.C., Wang, S., Tiwari, S.B., Joshi, A.D., Hagen, G., Guilfoyle, T.J., Alonso, J.M., Ecker, J.R., and Reed, J.W. (2005). NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. The Plant journal : for cell and molecular biology 43, 118-130. Wu, T.Y., Juan, Y.T., Hsu, Y.H., Wu, S.H., Liao, H.T., Fung, R.W., and Charng, Y.Y. (2013). Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis. Plant physiology 161, 2075-2084. Xiang, Y., Nakabayashi, K., Ding, J., He, F., Bentsink, L., and Soppe, W.J. (2014). Reduced Dormancy5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis. The Plant cell 26, 4362-4375. Xuan, Y., Zhou, S., Wang, L., Cheng, Y., and Zhao, L. (2010). Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant physiology 153, 1895-1906. Yang, C., Li, D., Mao, D., Liu, X., Ji, C., Li, X., Zhao, X., Cheng, Z., Chen, C., and Zhu, L. (2013). Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, cell & environment 36, 2207-2218. Yang, J., Tian, L., Sun, M.X., Huang, X.Y., Zhu, J., Guan, Y.F., Jia, Q.S., and Yang, Z.N. (2013). AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant physiology 162, 720-731. Yang, S.W., Jang, I.-C., Henriques, R., and Chua, N.-H. (2009). FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE Associate with the Arabidopsis Transcription Factors LAF1 and HFR1 to Transmit Phytochrome A Signals for Inhibition of Hypocotyl Elongation. The Plant cell 21, 1341-1359. Yang, X., and Li, L. (2012). Analyzing the microRNA Transcriptome in Plants Using Deep Sequencing Data. Biology 1, 297-310. Yu, N., Niu, Q.W., Ng, K.H., and Chua, N.H. (2015). The role of miR156/SPLs modules in Arabidopsis lateral root development. The Plant journal : for cell and molecular biology 83, 673-685. Zandalinas, S.I., Balfagon, D., Arbona, V., Gomez-Cadenas, A., Inupakutika, M.A., and Mittler, R. (2016). ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. Journal of experimental botany 67, 5381-5390. Zhang, B. (2015). MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of experimental botany 66, 1749-1761. Zhang, C., Li, G., Chen, T., Feng, B., Fu, W., Yan, J., Islam, M.R., Jin, Q., Tao, L., and Fu, G. (2018). Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice (New York, N.Y.) 11, 14. Zhang, H., Cui, F., Wu, Y., Lou, L., Liu, L., Tian, M., Ning, Y., Shu, K., Tang, S., and Xie, Q. (2015). The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. The Plant cell 27, 214-227. Zhong, C., Xu, H., Ye, S., Wang, S., Li, L., Zhang, S., and Wang, X. (2015). Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis. Plant physiology 169, 2288-2303.
摘要: MicroRNA為一段21~24核甘酸長度,不轉譯蛋白質的 RNA,它透過降解目標基因mRNA及抑制轉譯來阻止基因的表現。miR160的目標基因為ARF10、ARF16和ARF17。在熱逆境下miR160會被誘導,並且阿拉伯芥miR160大量表現株 (160OE) 比起野生株具有較好的耐熱性。雖然miR160大量表現株的種子發芽率較野生型高,對於miR160及其下游基因的傳遞路徑依然尚未明朗。藉由將短時間熱處理的samples RNA進行NGS測定後,從NGS的結果中篩選了四種被熱及miR160調控的不同基因群。透過GO term 分析基因的種類後發現在熱逆境和160OE株中受誘導的基因大多與強光、熱反應及H2O2 相關,其中包含熱休克因子/蛋白相關基因HSP26.5、HSP17.6、CLPB1 和 HSFA2及離層酸 (ABA) 相關基因。另外被熱逆境誘導,但在160OE株中被抑制的基因大多與種子休眠有關,包括APUM9、MSE65、MSE66、LEA18 和LEA46,其中也有生長素 (auxin) 相關基因IAA32和對吉貝素 (GA) 反應的SWEET14基因。在熱逆境及160OE株中都被抑制的基因除了參與細菌防禦反應的基因外,還有參與吉貝素訊息傳遞路徑和細胞分裂素催化過程的基因。在熱逆境下被抑制,但在160OE株中被誘導的基因除了有參與光訊號傳遞路徑的PIL1和LAF1基因以外,還有抑制花朵發育的PIE1基因及身為轉錄因子的anac028和ARF19基因。透過NGS基因的篩選及GO term的分析,有助於了解熱逆境和miR160在植物體內的交互作用機制。
MicroRNA is the 21~24 nucleotide non-coding small RNA. It represses target genes expression by degrading mRNA or repressing translation. MiR160 targeted and regulated ARF10, ARF16 and ARF17. Also, miR160 is induced by heat stress, and miR160 over-expressing transgenic plants (160OE) have higher thermotolerance than wild-type in Arabidopsis thaliana. Although overexpression of miR160 improves the survival rate of seedlings, the signaling pathway of miR160 and its downstream genes are still unclear. After next generation sequencing of heat shock samples, the data of wild-type and 160OE with four different screening conditions were analyzed. GO term schematics were used to know the gene species in these four conditions. According to results, heat stress and 160OE induced the genes about response to heat, high light intensity and H2O2, including heat shock factor/protein genes HSP26.5, HSP17.6, CLPB1 and HSFA2. ABA-related genes were also affected. The genes induced by heat stress but repressed in 160OE were seed dormancy-related genes, including APUM9, MSE65, MSE66, LEA18, and LEA46, auxin-related gene, IAA32, and gibberellic acid responsive gene, SWEET14. The genes repressed in 160OE and heat stress were involving in defense response to bacterium, gibberellic acid signaling pathway and cytokinin catabolic process. Additionally, the genes repressed by heat stress but induced in 160OE were light signaling pathway genes PIL1 and LAF1, negative regulator of flower development PIE1, and transcription factor genes anac028 and ARF19. Therefore, the interactions of heat stress and miR160 in plants were known by gene selected and GO term schematics.
URI: http://hdl.handle.net/11455/97733
文章公開時間: 2021-08-22
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.