Please use this identifier to cite or link to this item:
標題: 低溫處理對不同時期冰花葉片抗氧化機制的影響
The effects of low temperature on antioxidative mechanisms in ice plant (Mesembryanthemum crystallinum L.) leaves at different growth stages
作者: 黃文伶
Wen-Ling Huang
關鍵字: 低溫逆境
low temperature
ice plant
引用: 李佳哲 (2017) 藉由轉錄體分析探討冰花小苗於鹽逆境初期的差異表現基因及參與之反應途徑。國立中興大學生命科學系研究所碩士論文。 賴初枝 (1997) 不同溫度、ABA及抗氧化劑處理對番木瓜組織培養苗抗氧化酵素系統之影響。國立中興大學植物系研究所碩士論文。 Adams, P., Nelson, D.E., Yamada, S., Chmara, W., Jensen, R.G., Bohnert, H.J., and Griffiths, H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138: 171-190. Agarie, S., Kawaguchi, A., Kodera, A., Sunagawa, H., Kojima, H., Nose, A., and Nakahara, T. (2009). Potential of the common ice plant, Mesembryanthemum crystallinum as a new high-functional food as evaluated by polyol accumulation. Plant Prod. Sci. 12: 37-46. Barnes, A.C., Benning, C., and Roston, R.L. (2016). Chloroplast membrane remodeling during freezing stress is accompanied by cytoplasmic acidification activating SENSITIVE TO FREEZING 2. Plant Physiol. 171: 2140-2149. Berndt, C., Lillig, C.H., and Flohé, L. (2014). Redox regulation by glutathione needs enzymes. Front. Pharmacol. 5: 168. Bohnert, H.J., and Cushman, J.C. (2000). The ice plant cometh: Lessons in abiotic stress tolerance. J. Plant Growth Regul. 19: 334-346. Bray, E.A. (2000). Responses to abiotic stresses. In: Biochemistry and Molecular Biology of Plants. Buchanan, B.B., Gruissem, W., and Jones, R. eds. PP. 1158-1203. Chauhan, S., Forsthoefel, N., Ran, Y., Quigley, F., Nelson, D.E., and Bohnert, H.J. (2000). Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J. 24: 511-522. Chen, C., Zhang, Y., Xu, Z., Luan, A., Mao, Q., Feng, J., Xie, T., Gong, X., Wang, X., Chen, H., and He, Y. (2016). Transcriptome profiling of the pineapple under low temperature to facilitate its breeding for cold tolerance. PLoS One. 11: e0163315. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17: 1043-1054. Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci. 12: 444-451. Dizdaroglu, M., Jaruga, P., Birincioglu, M., and Rodriguez, H. (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 11: 1102-1115. Duan, M., Feng, H.L., Wang, L.Y., Li, D., and Meng, Q.W. (2012a). Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J. Plant Physiol. 169: 867-877. Duan, M., Ma, N.N., Li, D., Deng, Y.S., Kong, F.Y., Lv, W., and Meng, Q.W. (2012b). Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol. Biochem. 58: 37-45. Foyer, C.H., Neukermans. J., Queval, G., Noctor, G., and Harbinson, J. (2012). Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63: 1637-1661. Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155: 2-18. Freudenthal, B.D., Beard, W.A., Perera, L., Shock, D.D., Kim, T., Schlick, T., and Wilson, S.H. (2015). Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature 517: 635-639. Fryer, M.J., Oxborough, K., Mullineaux, P.M., and Baker, N.R. (2002). Imaging of photo-oxidative stress responses in leaves. J. Exp. Bot. 53: 1249-1254. Garnik, E.Y., Belkov, V.I., Tarasenko, V.I., Korzun, M.A., and Konstantinov, Y.M. (2016). Glutathione reductase gene expression depends on chloroplast signals in Arabidopsis thaliana. Biochem. (Mosc.) 81: 364-372. Grassmann, J. (2005). Terpenoids as plant antioxidants. Vitam. Horm. 72: 505-535. Goldberg, D.M., and Spooner, R.J. (1981). Glutathione reductase In: Methods of enzymatic analysis. Bergmeyer, H.U. ed. Verlag Chemie. PP. 258-265. Guy, C.L., Huber, J.L., and Huber, S.C. (1992). Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol. 100: 502-508. Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., and Zhang, J.Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130: 639-648. Hasanuzzaman, M., Hossain, M.A., da Silva, J.A.T., and Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor, In: Crop stress and its management: perspectives and strategies. Venkateswarlu, B., Shanker, A. K., Shanker, C., and Maheswari, M. eds. PP. 261-315. Hong, Y., Zhang, H., Huang, L., Li, D., and Song, F. (2016). Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci. 7: 4. Hossain, M.A., Nakano, Y., and Asada, K. (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 25: 385-395. Hu, Y., Wu, Q., Sprague, S.A., Park, J., Oh, M., Rajashekar, C.B., Koiwa, H., Nakata, PA., Cheng, N., Hirschi, K.D., White, F.F., and Park, S. (2015). Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. Hortic. Res. 2: 15051. Ishitani, M., Majumder, A.L., Bornhouser, A., Michalowski, C.B., Jensen, R.G. and Bohnert, H.J. (1996). Coordinate transcriptional induction of myo‐inositol metabolism during environmental stress. Plant J. 9: 537-548. Karami-Moalem, S., Maali-Amiri, R., and Kazemi-Shahandashti, S.S. (2018). Effect of cold stress on oxidative damage and mitochondrial respiratory properties in chickpea. Plant Physiol Biochem. 122: 31-39. Kato, M., and Shimizu, S. (1985). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic- dependent peroxidative degradation. Can. J. Bot. 65: 729-935. Kazemi-Shahandashti, S.S., Maali-Amiri, R., Zeinali, H., Khazaei, M., Talei, A., and Ramezanpour, S.S. (2014). Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. J. Plant Physiol. 171: 1106-1116. Kim, Y.S., Lee, M., Lee, J.H., Lee, H.J., and Park, C.M. (2015). The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol. Biol. 89: 187–201. Kishor, P., Hong, Z., Miao, G.H., Hu, C., and Verma, D. (1995). Overexpression of Δ-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394. Knight, H., and Knight, M.R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6: 262-267 Konieczny, R., Banaś, A.K., Surówka, E., Michalec, Ż., Miszalski, Z., and Libik-Konieczny, M. (2014). Pattern of antioxidant enzyme activities and hydrogen peroxide content during developmental stages of rhizogenesis from hypocotyl explants of Mesembryanthemum crystallinum L. Plant Cell Rep. 33: 165-177. Kunwar, A., and Priyadarsin, K.I. (2011). Free radicals, oxidative stress and importance of antioxidants in human health. J. Med. Allied Sci. 1: 53-60. Kuźniak, E., Kornas, A., Kaźmierczak, A., Rozpądek, P., Nosek, M., Kocurek, M., Zellnig, G., Müller, M., and Miszalski, Z. (2016). Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum. Ann. Bot. 117: 1141-1151. Lai, S.J., Lai, M.C., Lee, R.J., Chen, Y.H., Yen, H.E. (2014) Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. Plant Mol. Biol. 85: 429-441. Lee, B.H., Lee, C.C., and Wu, S.C. (2014). Ice plant (Mesembryanthemum crystallinum) improves hyperglycaemia and memory impairments in a Wistar rat model of streptozotocin-induced diabetes. J. Sci. Food Agric. 94: 2266-2273. Lee, J.S., and Chandra, D. (2018). Effects of different packaging materials and methods on the physical, biochemical and sensory qualities of lettuce. J. Food Sci. Technol. 55: 1685-1694. Li, W., Li, M., Zhang, W., Welti, R., and Wang, X. (2004). The plasma membrane-bound phospholipase D enhances freezing tolerance in Arabidopsis thaliana. Nat. Biotechnol. 22: 427-433. Lillemeier, B.F., Pfeiffer, J.R., Surviladze, Z., Wilson, B.S., and Davis, M.M. (2006). Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl. Acad. Sci. U.S.A. 103: 18992-18997. Lisenbee, C.S., Lingard, M.J., and Trelease, R.N. (2005). Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J. 43: 900-914. Lüttge, U. (2004). Ecophysiology of crassulacean acid metabolism (CAM). Ann. Bot. 93: 629-652. Mehler, A.H. (1951). Studies on the reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33: 65-77. Minami, A., Fujiwara, M., Furuto, A., Fukao, Y., Yamashita, T., Kamo, M., Kawamura, Y., and Uemura, M. (2009). Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant Cell Physiol. 50: 341-359. Miura, K., and Furumoto, T. (2013). Cold signaling and cold response in plants. Int. J. Mol. Sci. 14: 5312-5337. Motohashi, N. (2014). The health effects of halophyte ice plant Mesembryanthemum crystallinum L. based on evidence. In: Occurrences, structure, biosynthesis, and health benefits based on their evidences of medicinal phytochemicals in vegetables and fruits. Motohashi, N. ed. 2: 67-98 Nagao, M., Matsui, K., and Uemura, M. (2008). Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ. 31: 812-885. Nakano, Y., and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22: 867-880. Narendra, S., Venkataramani, S., Shen, G., Wang, J., Pasapula, V., Lin, Y., Kornyeyev, D., Holaday, A.S., and Zhang, H. (2006). The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J. Exp. Bot. 7: 3033-3042. Noblet, A., Leymarie, J., and Bailly, C. (2017). Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Sci. Rep. 7: 8886. Noctor, G., Reichheld, J.P., and Foyer, C.H. (2018). ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80: 3-12. Noshi, M., Hatanaka, R., Tanabe, N., Terai, Y., Maruta, T., and Shigeoka, S. (2016). Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci. Biotechnol. Biochem. 80: 870-877. Obara, K., Sumi, K., and Fukuda, H. (2002). The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts. Plant Cell Physiol. 43: 697-705. Ober, E.S., and Sharp, R.E. (1994). Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. I. Requirement for increased levels of abscisic acid. Plant Physiol. 105: 981-987. Ojeda-Pérez, Z.Z., Jiménez-Bremont, J.F., and Delgado-Sánchez, P. (2017). Continuous high and low temperature induced a decrease of photosynthetic activity and changes in the diurnal fluctuations of organic acids in Opuntia streptacantha. PLoS One 12: e0186540. Orthen, B., and Popp, M. (2000). Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environ. Exp. Bot. 44: 125-132. Palma, F., Carvajal, F., Lluch, C., Jamilena, M., and Garrido, D. (2014). Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress. Plant Sci. 217-218: 78-86. Panchuk, I.I., Zentgraf, U., and Volkov, R.A. (2005). Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222: 926-932. Pitt, J., Thorner, M., Brautigan, D., Larner, J., and Klein, W.L. (2013). Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols. FASEB J. 27: 199-207. Polle, A. (2001). Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol. 126: 445-462. Prasad, T.K., Anderson, M.D., and Stewart, C.R. (1994). Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol. 105: 619-627. Ramalho, J.C., Rodrigues, A.P., Lidon, F.C., Marques, L.M.C., Leitão, A.E., Fortunato, A.S., Pais, I.P., Silva, M.J., Scotti-Campos, P., Lopes, A., Reboredo, F.H., and Ribeiro-Barros, A.I. (2018). Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS One 13: e0198694. Ramel, F., Sulmon, C., Bogard, M., Couée, I., and Gouesbet, G. (2009). Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC plant biol. 9: 28. Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., and Balasubramanian, M.P. (2015). D-Pinitol protects against carbon tetrachloride-induced hepatotoxicity in rats. J. Environ. Pathol. Toxicol. Oncol. 34: 287-298. Sambe, M.A., He, X., Tu, Q., and Guo, Z. (2015). A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants. Physiol. Plant. 153: 355-364. Shin, S.Y., Kim, M.H., Kim, Y.H., Park, H.M., and Yoon, H.S. (2013). Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress. Mol. Cells 36: 304-315. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. Shinozaki, K., Uemura, M., Bailey-Serres, J., Bray, E.A., and Weretilnyk, E. (2015). Responses to abiotic stress. In: Biochemistry and Molecular Biology of Plants. Buchanan, B.B., Gruissem, W. and Jones, R. eds. 2nd edition PP. 1469-1530. Shulaev, V., Cortes, D., Miller, G., and Mittler, R. (2008). Metabolomics for plant stress response. Physiol. Plant. 132: 199-208. Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387: 569-572. Slesak, I., Karpinska, B., Surowka, E., Miszalski, Z. and Karpinski, S. (2003). Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3‐CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol. 44: 573-581. Steponkus, P.L., and Webb, M.S. (1992). Freeze-induced dehydration and membrane destabilization in plants. In: Water and life: comparative analysis of water relationships at the organismic cellular and molecular level. Somero, G., and Osmond, B. eds. PP. 338-362. Thomashow, M.F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599. Van Camp, W., Capiau, K., Van Montagu, M., Inzé, D., and Slooten, L. (1996). Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 112: 1703-1714. Vernon, D.M., and Bohnert, H.J. (1992). A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO. J. 11: 2077-2085. Vogt, T., Ibdah, M., Schmidt, J., Wray, V., Nimtz, M., and Strack, D. (1999). Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry 52: 583-592. Wang, Y., Wisniewski, M., Meilan, R., Cui, M., Webb, R., and Fuchigami, L. (2005). Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J. Am. Soc. Hortic. Sci. 130: 167-173 Yang, Y., Han, C., Liu, Q., Lin, B., and Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta. Physiol. Plant 30: 433-440. Zhang, L., Liu, X., Wang, Y., Liu, G., Zhang, Z., Zhao, Z., and Cheng, H. (2017). In vitro antioxidative and immunological activities of polysaccharides from Zizyphus Jujuba cv. Muzao. Int. J. Biol. Macromol. 95: 1119-1125. Zhao, H., Ye, L., Wang, Y., Zhou, X., Yang, J., Wang, J., Cao, K., and Zou, Z. (2016). Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Front Plant Sci. 7: 1814.
摘要: 冰花(Mesembryanthemum crystallinem L.)為原生於南非沙漠的耐旱耐鹽植物,具有C3-CAM (Crassulacean Acid Metabolism)光合作用轉變機制,來提高水分利用效率,並且具有滲透調節、區隔鈉離子以及許多相關機制來適應缺水逆境,但是目前冰花對於低溫的適應性並無文獻報導,無法得知會使冰花產生低溫逆境的溫度。低溫逆境會誘導氧化逆境,當ROS (reactive oxygen species)不能夠正常代謝或過量生產造成ROS過度累積時,即造成氧化逆境。避免氧化逆境對植物造成傷害,負責代謝ROS的抗氧化系統包含酵素型及非酵素型機制,ascorbate-glutathione cycle在其中扮演重要的角色。本論文利用市售蔬果常用的4˚C及18˚C進行低溫處理,觀察低溫以及低溫所誘導的氧化逆境對不同時期冰花的影響。低溫處理下植株會有延緩生長的情形,也會抑制開花,顯示低溫會影響冰花的生長發育。低溫會誘導氧化逆境,因此追蹤葉片中ROS的累積發現primary leaves及secondary leaves在18˚C累積較多的超氧陰離子,4˚C則累積較少,而4˚C處理下primary leaves累積較多的過氧化氫,而secondary leaves累積較少,發現低溫確實影響ROS的累積。測定清除ROS的抗氧化酵素活性顯示,幼年期的植株在進行低溫處理後APX (ascorbate peroxidase)、DHAR (dehydroascorbate reductase)、MDHAR (monodehydroascorbate reductase)及GR (glutathione reductse)的酵素活性皆有降低的趨勢,成熟期的植株在進行低溫處理後APX、DHAR及MDHAR有上升的趨勢,開花期的植株在進行低溫處理後APX及GR的活性有降低的趨勢。針對APX基因群進行進一步的表現分析,發現位於膜系的APX與低溫處理有趨勢性的相關,在primary leaves中APX3顯示溫度越低且時間越長則表現量較低,在secondary leaves中發現APX5在4˚C處理下會大量的表現。而冰花為可食用性的多肉植物,富含一般蔬菜中少有的特殊營養物質,如糖醇類中的pinitol,因此檢測植株中糖類及糖醇類的含量在低溫處理下的變化,發現在植物體內糖類主要運輸形式的蔗糖,在低溫處理下含量會下降;而果糖及糖醇類pinitol和myo-inositol在長期低溫處理下,在secondary leaves中含量會上升。以切離葉進行低溫處理觀察葉片鮮重變化情形,發現在8天4˚C處理下secondary leaves水分散失較少,然而將全株進行低溫處理後採取葉片進行電解質滲漏率測量,則顯示不受低溫影響。綜合以上結果發現,低溫造成冰花有延緩生長的情形,在4˚C下甚至有停止生長的情形,因此認為4˚C會造成冰花低溫逆境,雖然低溫可降低切離葉葉片水分散失率。低溫誘導氧化逆境對於不同時期的冰花有不同的ROS累積情形、抗氧化酵素活性反應、特定APX基因表現以及糖類的累積。經由此研究開始了解冰花對低溫逆境的生理反應,期望將來從中找出關鍵影響因子,做為後續改良低溫保存冰花切離葉的依據。
Ice plant (Mesembryanthemum crystallinum L.) is a halophyte native to the desert in South Africa. Ice plant has high water use efficiency by the shift from C3 photosynthesis to Crassulacean acid metabolism (CAM) and adapts water-deficit environment by osmotic adjustment, Na+ sequestration, and other related mechanisms. However, up to date, we have little knowledge of how low temperature affects the growth of ice plant, and there is no report discussing the adaptation to chilling stress of ice plant. Cold stress causes oxidative stress from accelerated production or abnormal metabolism of ROS (reactive oxygen species). ROS scavenging including enzymatic and non-enzymatic systems are responsible for avoiding the damage of oxidative stress to plants. Among them, the ascorbate-glutathione cycle plays a vital role. We chose 4˚C and 18˚C to study the effects of low temperature and oxidative stress in ice plant at different growth stages. Low temperature retarded vegetative growth and inhibited flowering suggesting that cold affcted the growth and development of ice plant. Cold stress induces oxidative stress. There was more superoxide anion in primary and secondary leaves at 18˚C and less at 4˚C. Primary leaves accumulated more H2O2 at 4˚C while secondary leaves accumulated less. These results showed that low temperature affected the accumulation of ROS. The results of measuring antioxidative enzyme activities showed that the activities of APX (ascorbate peroxidase), DHAR (dehydroascorbate reductase), MDHAR (monodehydroascorbate reductase), and GR (glutathione reductase) in juvenile plants decreased after 8-day low temperature treatments. In adult plants, the activities of APX, DHAR, and MDHAR increased and there was a trend of decreasing of APX and GR activities in flowering plants after low temperature treatments. Further analysis of APXs gene expression revealed that microsomal APXs were related to cold. The expression of APX3 in primary leaves showed the lower the temperature and the longer the chilling time, the lower the gene expressed. The expression of APX5 showed significant higher expression at 4˚C in secondary leaves than other temperatures. Ice plant is an edible succulent containing rich special nutrition such as pinitol, a derivative of sugar alcohol. The soluble sugars and sugar alcohols contents detected by high performance liquid chromatography showed that the content of sucrose, as a major transport form of sugars in plants, decreased in low temperature. The contents of fructose, pinitol, and myo-inositol increased in long-term low temperature treated secondary leaves. Cut leaves of ice plant were treated with 4˚C and 18˚C to monitor the loss of water content throughout a week. The 8-day 4˚C treated secondary leaves had the least water loss. However, low temperature has no effect on electrolyte leakage of leaves collected from whole plant treated with low temperature. In conclusion, low temperature delays the growth and development of ice plant, and 4˚C treatment even stops growing of the plant. I suspected that 4˚C is the temperature that causes cold stress to ice plant, although it could lower the water loss of cut leaves. Low temperature induces oxidative stress as shown by different ROS accumulation, antioxidative enzyme activities, specific APX gene expression, and sugar accumulation at different stages ice plant. Through this study, the physiological responses of ice plant to low temperature are starting to be uncovered. The goal is to identify the key factors affecting low temperature responses of ice plant and will be the basis for improvement of the storage in low temperature of ice plant cut leaves.
文章公開時間: 2021-08-30
Appears in Collections:生命科學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.