Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97738
標題: 具白斑與否之水鴨腳秋海棠葉特徵、生殖特性與被取食的比較探討
Comparative study of foliar variegation of Begonia formosana: leaf features, reproductive characters and herbivory
作者: 林宜憲
Yi-Sian Lin
關鍵字: 秋海棠科
水鴨腳秋海棠
斑葉
植食者
適存度
雄花
雌花
果實
花粉
基因體大小
可塑性
Begoniaceae
Begonia formosana
foliar variegation
herbivore
fitness
male flower
female flower
fruit
pollen
genome size
plasticity
引用: 陳運萱。2015。柏拉木幼苗斑葉機制與生理生態意涵之探討。國立中興大學生命科學研究所碩士論文。 黃馨賢。2016。新北市石門區嵩山社區蝶相及其生態之研究。臺北市立大學地球環境暨生物資源學系碩士在職專班。 趙惠德。2000。不同光度及施肥量對烏心石苗木形態及生理之影響。國立臺灣大學森林學研究所碩士論文。 Armbruster, W. S., L. Antonsen, and C. Pélabon. 2005. Phenotypic selection on Dalechampia blossoms: honest signaling affects pollination success. Ecology 86:3323-3333. Bert, T. M., and H. Luther. 2005. Aechmea information. Mulford B. Foster, Bromeliad Identification Center. Disponível em: <http://fcbs.org/articles/Aechmea_spp_table.pdf>. Acessado em 12. Bogner, J., and A. Hay. 2000. Schismatoglottideae (Araceae) in Malesia 2: Aridarum, Bucephalandra, Phymatarum and Piptospatha. Telopea 9:179-222. Bos, J., P. Graven, W. Hetterscheid, and J. Van De Wege. 1992. Wild and cultivated Dracaena fragrans. Edinburgh Journal of Botany 49:311-331. Cahn, M., and J. Harper. 1976. The biology of the leaf mark polymorphism in Trifolium repens L. Heredity 37:327-333. Campitelli, B. E., I. Stehlik, and J. R. Stinchcombe. 2008. Leaf variegation is associated with reduced herbivore damage in Hydrophyllum virginianum. Botany 86:306-313. Castillo, R., C. Cordero, and C. Domínguez. 2002. Are reward polymorphisms subject to frequency‐and density‐dependent selection? Evidence from a monoecious species pollinated by deceit. Journal of Evolutionary Biology 15:544-552. Castillo, R. A., H. Caballero, K. Boege, J. Fornoni, and C. A. Dominguez. 2012. How to cheat when you cannot lie? Deceit pollination in Begonia gracilis. Oecologia 169:773-782. Chen, Y. S., P. Chesson, H. W. Wu, S. H. Pao, J. W. Liu, L. F. Chien, J. W. H. Yong, and C. R. Sheue. 2017. Leaf structure affects a plant's appearance: combined multiple-mechanisms intensify remarkable foliar variegation. Journal of Plant Research 130:311-325. Downs, B. D., K. C. Vaughn, and K. G. Wilson. 1980. Brief Note: Preliminary Investigation of Air Blisters in Pilea Cadierei. The Ohio Journal of Science 80: 280-281. ElMardi, M. O. 1977. In vitro growth and development of Scindapsus aureus. Master thesis, The University of Arizona. Fenster, C. B., W. S. Armbruster, P. Wilson, M. R. Dudash, and J. D. Thomson. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics 35:375-403. Givnish, T. 1990. Leaf mottling: relation to growth form and leaf phenology and possible role as camouflage. Functional Ecology 4:463-474. Gonçalves, E. G. 2012. A revision of the small genus Zomicarpa Schott. Kew Bulletin 67:443-449. Hara, N. 1957. Study of the variegated leaves with special reference to those caused by air spaces. The Journal of Japanese Botany 16:86-101. Hay, A. 2000. Yuzammi. 2000. Schismatoglottideae (Araceae) in Malesia: 1. Schismatoglottis. Telopea 9:1-177. Haynes, R., D. Les, L. Holm-Nielsen, and K. Kubitzki. 1998. The families and genera of vascular plants. Vol. IV–Flowering plants, monocotyledons: Alismatanae and Commelinanae (except Graminae). Pp. 197-207. Springer, Berlin. Hu, W., C. Chang, C. Peng, and S. Liaw. 2010. In vitro flowering and fruiting of Begonia parvula H. Lev. & Vaniot. European Journal of Horticultural Science 75:172-176. Jiao, Y., N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr, P. E. Ralph, L. P. Tomsho, Y. Hu, H. Liang, P. S. Soltis, D. E. Soltis, S. W. Clifton, S. E. Schlarbaum, S. C. Schuster, H. Ma, J. Leebens-Mack, and C. W. dePamphilis. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100. Karageorgou, P., and Y. Manetas. 2006. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiology 26:613-621. Koh, Y. C., and F. T. Davies Jr. 1997. Micropropagation of Cryptanthus with leaf explants with attached intercalary meristems excised from greenhouse stock plants. Scientia Horticulturae 70:301-307. Kuo, L.-Y., and Y.-M. Huang. 2017. Determining genome size from spores of seedless vascular plants. Bio-protocol 7: e2322. La Rocca, N., N. Rascio, and P. Pupillo. 2011. Variegation in Arum italicum leaves. A structural-functional study. Plant Physiology Biochemistry 49:1392-1398. Lee, D. W., and K. S. Gould. 2002. Anthocyanins in leaves and other vegetative organs: an introduction. Advances in Botanical Research 37:1-16. Lee, D. W., J. B. Lowry, and B. Stone. 1979. Abaxial anthocyanin layer in leaves of tropical rain forest plants: enhancer of light capture in deep shade. Biotropica 11:70-77. Leitch, A., and I. Leitch. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320:481-483. Lev-Yadun, S. 2009. Müllerian and Batesian mimicry rings of white-variegated aposematic spiny and thorny plants: A hypothesis. Israel Journal of Plant Sciences 57:107-116. Lev-Yadun, S. 2014. Potential defence from herbivory by 'dazzle effects' and 'trickery coloration' of leaf variegation. Biological journal of the Linnean Society 111:692-697. Lev-Yadun, S. 2015. The proposed anti-herbivory roles of white leaf variegation. Pages 241-269. In U. Lüttge and W. Beyschlag (ed.), Progress in Botany 76. Springer Cham Heidelberg New York Dordrecht London. Li, Q., J. Chen, D. B. McConnell, and R. J. Henny. 2007. A simple and effective method for quantifying leaf variegation. HortTechnology 17:285-288. Martin, R. J., D. R. Lauren, W. A. Smith, D. J. Jensen, B. Deo, and J. A. Douglas. 2006. Factors influencing silymarin content and composition in variegated thistle (Silybum marianum). New Zealand Journal of Crop and Horticultural Science 34:239-245. Moss, R., R. R. Jackson, and S. D. Pollard. 2006. Hiding in the grass: Background matching conceals moths (Lepidoptera: Crambidae) from detection by spider eyes (Araneae: Salticidae). New Zealand Journal of Zoology 33:207-214. Niemelä, P., J. Tuomi, and S. Siren. 1984. Selective herbivory on mosaic leaves of variegated Acer pseudoplatanus. Experientia 40:1433-1434. Oginuma, K., and C.-I. Peng. 2002. Karyomorphology of Taiwanese Begonia (Begoniaceae): taxonomic implications. Journal of plant research 115:0225-0235. Pao, S., P. Chesson, C. Peng, W. Yeh, and C. Sheue. 2014. Characteristics and ecological significance of natural foliar variegation from Begonia formosana. in The 99th Annual Meeting, 10th–15th August, Ecological Society of America. Sacramento, California, USA. Price, T. D., A. Qvarnström, and D. E. Irwin. 2003. The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London B: Biological Sciences 270:1433-1440. Sheue, C. R., S. H. Pao, L. F. Chien, P. Chesson, and C. I. Peng. 2012. Natural foliar variegation without costs? The case of Begonia. Annual of Botany 109:1065-1074. Simpson, B. B., and J. L. Neff. 1981. Floral rewards: alternatives to pollen and nectar. Annals of the Missouri Botanical Garden 68:301-322. Smith, A. P. 1986. Ecology of a leaf color polymorphism in a tropical forest species: habitat segregation and herbivory. Oecologia 69:283-287. Tsukaya, H., H. Okada, and M. Mohamed. 2004. A novel feature of structural variegation in leaves of the tropical plant Schismatoglottis calyptrata. Journal of Plant Research 117:477-480. Vidovic, M., F. Morina, S. Milic, A. Albert, B. Zechmann, T. Tosti, J. B. Winkler, and S. V. Jovanovic. 2015. Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiology Biochemistry 93:44-55. Vladimirova, S. V., D. B. McConnell, M. E. Kane, and R. W. Henley. 1997. Morphological plasticity of Dracaena sanderana 'ribbon' in response to four light intensities. HortScience 32:1049-1052. Zheng, S. J., T. A. Snoeren, S. W. Hogewoning, J. J. van Loon, and M. Dicke. 2010. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae. New Phytologist 186:733-745.
摘要: 自然界中植物斑葉 (foliar variegation) 的成因主要有色素類(化學色)與結構類(物理色)這兩大類。許多具斑葉的植物生長於森林底層,終其一生均保有斑葉特性,有些斑葉植物僅幼年期才具有斑葉,另外,尚有若干種類的斑葉植物則於開花期前僅產生綠葉。前人研究認為斑葉的生存意義是降低被植食者取食或光保護作用。水鴨腳秋海棠 (Begonia formosana) 為北台灣常見的原生秋海棠科植物,具有綠葉型及斑葉型。本研究旨在探討水鴨腳秋海棠斑葉的葉特徵、生殖特性及適存度與視覺性植食者 (visual herbivore) 的關係。視覺性植食者使用雌的臺灣負蝗成蟲 (Atractomorpha sinensis) 用於探討植食者的取食偏好。 葉特徵結果顯示斑葉型與綠葉型的近軸面多列無分支毛數量沒有顯著差異。葉近軸面多邊形的表皮細胞面積則有差異,依序為斑葉綠區最大,綠葉次之,斑葉斑區最小。葉遠軸面方面,斑葉斑區、斑葉綠區及綠葉的保衛細胞大小沒有差異,但斑葉綠區則有最小的副細胞,斑葉斑區與綠葉的副細胞大小則沒有差異。在氣孔密度方面,斑葉斑區的氣孔密度最少,斑葉綠區與綠葉的氣孔密度則沒有差異。另外,三者之中,僅斑葉斑區的近軸面表皮細胞內有零星分布的晶簇狀結晶,斑葉綠區與綠葉則無分布。 斑葉特性的野外調查結果顯示水鴨腳秋海棠斑葉型族群約僅占9%。另外,斑葉型個體被植食者取食的比例遠小於綠葉型個體被取食的比例,與前人研究斑葉受到植食者取食的比例低相符。在開花結果能力方面,綠葉型與斑葉型個體一個花序上總共可開的雄花數及雌花數沒有差異,所結的果實數亦沒有差異。 繁殖器官形態結果顯示,綠葉型與斑葉型個體的雄花與雌花的花被片大小、花藥數及二維投影的柱頭面積,四者在兩型個體中均無差異,推測兩型個體被授粉者拜訪的機率可能沒有差異。花粉萌芽率、果實尺寸及一個果實內的總種子數等,在兩型個體間也無差異。在花粉與種子的外觀與尺寸方面,斑葉型個體的花粉較綠葉型個體的花粉寬;斑葉型個體的種子長度及寬度也較綠葉型個體的大,兩型具有顯著差異。這可能是因為斑葉型個體較少被植食者取食,使得斑葉型個體有較多的能量,可以產生較大的花粉及種子。 基因體大小結果顯示綠葉型個體與斑葉型個體的基因體大小相同。斑葉個體可塑性與光度的關聯結果顯示少部分斑葉型個體在高光度及低光度環境下,均可發育綠色的新生葉;綠葉型個體在高光度及低光度環境下則仍然發育綠色的新生葉。 視覺性植食者的取食偏好結果顯示植食者傾向於先跳至綠葉型個體,實驗結束時,亦傾向停留於綠葉型個體上。另外,綠葉型個體被取食的葉面積與植食者停留於綠葉上的時間,均顯著高於斑葉型個體,再次證實斑葉具有降低植食者危害的意義。 綜合上述,推測綠葉型與斑葉型水鴨腳秋海棠的適存度沒有差異。斑葉亦具有可塑性,但並未具有光保護能力。斑葉其生態意義為預防被植食者取食,進而使自身的族群不至於被植食者取食而大量減少。
Natural foliar variegated plants are occasionally found in forest understoreys. Pigmental type (chemical color) and structural type (physical color) are two main mechanisms of foliar variegation, have been reported. Some plants keep variegation throughout their life history, some only show this feature at the juvenile stage, and still others display this feature before flowering time. Anti-herbivory and photoprotection are two main hypotheses of the ecological meaning of foliar variegation. Begonia formosana (Begoniaceae), a shade herb native to Taiwan, has variegated and green form in nature. The aims of this study are to: 1) describe morphological differences between green and variegated leaves; 2) elucidate the reproductive differences between variegated and green forms with a view to understanding fitness differences between the two forms; 3) clarify the interaction between variegation and visual herbivores. In this study, adult female grasshopper, Atractomorpha sinensis, is chosen to represent the visual herbivore for understanding the herbivore preference. The leaf morphological study shows the number of multiseriate unbranched hair, and there is no difference between the two forms. The polygonal-shaped adaxial epidermal cells significantly vary in size. The green area of a variegated leaf has the largest polygonal-shaped adaxial epidermal cells, and the following is the green leaf. The white area of a variegated leaf has the smallest one. There is no size difference between guard cells of different leaf areas, but the green area of a variegated leaf has the smallest subsidiary cells, and the white area of a variegated leaf has the lowest stomatal density. Few druse-form oxalate crystals were found only in the adaxial epidermal cells of the white area of a variegated leaf. The variegated form of Begonia formosana accounts for around 9% of total population in Qingshan Waterfall Trail area, but the herbivore damage in the variegated leaves is significantly fewer than in the green leaves. This observation support the anti-herbivory hypothesis. In the aspect of the reproductive organs, there is no significant difference in the number of male flowers, female flowers, fruits and seeds between variegated and green form. More detail characteristics, including the size of flower petals, 2D projected stigmata, fruits and the number of anthers also show the same pattern. However, the variegated form has significantly wider pollen grains and bigger seeds than the green form. This reproductive difference may reflect higher photosynthetic reserves in the variegated form potentially due to lower herbivory on the variegated plant, allowing it to produce larger pollen grains and seeds. The genome size between the variegated and green form showed no difference. The variegated form showed the leaf plasticity in the high and low light environment. Some variegated form individuals grew green leaves in the high and low light environment. The variegated and green form are different for the visual herbivores. The grasshoppers stayed significantly longer and caused larger damage area on the green form leaf than the variegated form. They showed the same preference at the beginning and the end of the experiment. These results strongly indicate the little fitness difference between the variegated and green form. Although the variegated form grow green leaves in the different light environment, they are not for photoprotection. The ecological meaning of foliar variegation in Begonia formosana should be anti-herbivory, providing the prevention of visual herbivores to whole population.
URI: http://hdl.handle.net/11455/97738
文章公開時間: 10000-01-01
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.