Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97766
標題: 由纖維母細胞生長因子訊息傳遞鏈在半索動物中胚層發育的功能來探討後口動物的演化
FGF signaling in mesoderm development and evolution in deuterostomes: insights from the hemichordate Ptychodera flava
作者: 范子霈
Tzu-Pei Fan
關鍵字: 半索動物
玉柱蟲
中胚層
纖維母細胞生長因子
肌肉
變態
脊索
hemichordate
Ptychodera flava
FGF
mesoderm
muscle
metamorphosis
notochord
引用: Amaya E, Musci TJ, Kirschner MW. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell. 1991;66:257-70. Amaya E, Stein PA, Musci TJ, Kirschner MW. FGF signalling in the early specification of mesoderm in Xenopus. Development. 1993;118:477-87. Andrikou C, Iovene E, Rizzo F, Oliver P, Arnone MI. Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors. EvoDevo. 2013;4:1-16. Andrikou C, Pai CY, Su YH, Arnone MI. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm. Elife. 2015;4: Angerer LM, Yaguchi S, Angerer RC, Burke RD. The evolution of nervous system patterning: insights from sea urchin development. Development. 2011;138:3613-23. Bateman A, Chothia C. Fibronectin type III domains in yeast detected by a hidden Markov model. 1996; Bateson W. The Later Stages in the Development of Balanoglossus Kowalevskii, with a Suggestion as to the Affinities of the Enteropneusta. J Cell Sci. 1885;s2-25:81-122. Beiman M, Shilo BZ, Volk T. Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev. 1996;10:2993-3002. Bertrand S, Camasses A, Somorjai I, Belgacem MR, Chabrol O, Escande ML, Pontarotti P, Escriva H. Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci U S A. 2011;108:9160-5. Bertrand S, Iwema T, Escriva H. FGF signaling emerged concomitantly with the origin of Eumetazoans. Mol Biol Evol. 2014;31:310-8. Bork P, Doolittle RF. Proposed acquisition of an animal protein domain by bacteria. Proc Nat Acad Sci USA. 1992;89:8990-94. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature. 2006;444:85-8. Brunet T, Fischer AH, Steinmetz PR, Lauri A, Bertucci P, Arendt D. The evolutionary origin of bilaterian smooth and striated myocytes. Elife. 2016;5: Burdine RD, Branda CS, Stern MJ. EGL-17(FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in C. elegans. Development. 1998;125:1083-93. Burdon-Jones C. Development and Biology of the Larva of Saccoglossus horsti (Enteropneusta). Philos Trans R Soc Lond B Biol Sci. 1952;236:553-89. Byrne M, Nakajima Y, Chee FC, Burke RD. Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev. 2007;9:432-45. Cameron CB, Garey JR, Swalla BJ. Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. Proc Nat Acad Sci USA. 2000;97:4469-74. Cameron CB, Rahman I. Saccoglossus testa from the Mazon Creek fauna (Pennsylvanian of Illinois) and the evolution of acorn worms (Enteropneusta: Hemichordata). Palaeontology. 2016;59:329-36. Cameron RA, Samanta M, Yuan A, He D, Davidson E. SpBase: the sea urchin genome database and web site. Nucleic Acids Res. 2009;37:D750-4. Cannon JT, Rychel AL, Eccleston H, Halanych KM, Swalla BJ. Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. Mol Phylogenet Evol. 2009;52:17-24. Caron JB, Morris SC, Cameron CB. Tubicolous enteropneusts from the Cambrian period. Nature. 2013;495:503-6. Carver EA, Jiang RL, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Molecular and Cellular Biology. 2001;21:8184-88. Castanon I, Baylies MK. A Twist in fate: evolutionary comparison of Twist structure and function. Gene. 2002;287:11-22. Chen SH, Li KL, Lu IH, Wang YB, Tung CH, Ting HC, Lin CY, Lin CY, Su YH, Yu JK. Sequencing and analysis of the transcriptome of the acorn worm Ptychodera flava, an indirect developing hemichordate. Mar Genom. 2014;15:35-43. Chia FS, Koss R. Fine structural studies of the nervous system and the apical organ in the planula larva of the sea anemone Anthopleura elegantissima. J Morphol. 1979;160:275-97. Christ B, Huang R, Scaal M. Amniote somite derivatives. Dev Dyn. 2007;236:2382-96. Colwin AL, Colwin LH. The Normal Embryology of Saccoglossus Kowalevskii (Enteropneusta). Journal of Morphology. 1953;92:401-53. Conzelmann M, Williams EA, Tunaru S, Randel N, Shahidi R, Asadulina A, Berger J, Offermanns S, Jekely G. Conserved MIP receptor-ligand pair regulates Platynereis larval settlement. Proc Natl Acad Sci U S A. 2013;110:8224-9. D'aniello S, Irimia M, Maeso I, Pascual-Anaya J, Jimenez-Delgado S, Bertrand S, Garcia-Fernandez J. Gene expansion and retention leads to a diverse tyrosine kinase superfamily in amphioxus. Mol Biol Evol. 2008;25:1841-54. Dionne CA, Crumley G, Bellot F, M.Kaplow J, Searfoss G, Ruta M, H.Burgess W, Jaye M, Schlessinger J. Cloning and expression of two distincthigh-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J. 1990;9:2658-92. Dorey K, Amaya E. FGF signalling: diverse roles during early vertebrate embryogenesis. Development. 2010;137:3731-42. Draper BW, Stock DW, Kimmel CB. Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development. 2003;130:4639-54. Dunn CW, Giribet G, Edgecombe GD, Hejnol A. Animal Phylogeny and Its Evolutionary Implications. Annu Rev Ecol Evol Syst. 2014;45:371-95. Essex LJ, May{Essex O, R., Sargent MG. Expression of Xenopus Snail in Mesoderm and Prospective Neural Fold Ectoderm. Developmental Dynamics. 1993;198:108-22. Fan T-P, Ting H-C, Yu J-K, Su Y-H. Reiterative use of FGF signaling in mesoderm development during embryogenesis and metamorphosis in the hemichordate Ptychodera flava. BMC Evolutionary Biology. 2018;18: Fan TP, Su YH. FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava. Mar Genomics. 2015;24:167-75. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222-30. Fletcher RB, Baker JC, Harland RM. FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development. 2006;133:1703-14. Fletcher RB, Harland RM. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev Dyn. 2008;237:1243-54. Gao F, Davidson EH. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc Natl Acad Sci U S A. 2008;105:6091-6. Gilbert SF. Developmental biology 10. Sunderland, MA, USA:Andrew D. Sinauer. 2014. Gisselbrecht S, Skeath JB, Doe CQ, Michelson AM. Heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes Dev. 1996;10:3003-17. Goodrich ES. 'Proboscis pores' in Craniate Vertebrates, a Suggestion Concerning the Premandibular Somites and Hypophysis. J Cell Sci. 1917;s2-62:539-53. Gospodarowicz D. Purification of a Fibroblast Growth Factor from Bovine Pituitary. J Biol Chem. 1975;250:2515-20. Green SA, Norris RP, Terasaki M, Lowe CJ. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development. 2013;140:1024-33. Griffin K, Patient R, Holder N. Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development. 1995;121:2983-94. Gudernova I, Vesela I, Balek L, Buchtova M, Dosedelova H, Kunova M, Pivnicka J, Jelinkova I, Roubalova L, Kozubik A, Krejci P. Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes. Human Molecular Genetics. 2016;25:9-23. Hadfield MG. Growth and metamorphosis of planktonic larvae of Ptychodera flava (Hemichordata: Enteropneusta). Chia, F. S. and Rice, M. E. 1978. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser (Oxf). 1999;41:95-98. Hoggatt AM, Kim JR, Ustiyan V, Ren X, Kalin TV, Kalinichenko VV, Herring BP. The transcription factor Foxf1 binds to serum response factor and myocardin to regulate gene transcription in visceral smooth muscle cells. J Biol Chem. 2013;288:28477-87. Ikuta T, Chen YC, Annunziata R, Ting HC, Tung CH, Koyanagi R, Tagawa K, Humphreys T, Fujiyama A, Saiga H, Satoh N, Yu JK, Arnone MI, Su YH. Identification of an intact ParaHox cluster with temporal colinearity but altered spatial colinearity in the hemichordate Ptychodera flava. BMC Evol Biol. 2013;13:129. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends in Genetics. 2004;20:563-69. Juretic D, Zoranic L, Zucic D. Basic charge clusters and predictions of membrane protein topology. J Chem Inf Comput Sci. 2002;42:620-32. Kamei S, Yajima I, Yamamoto H, Kobayashi A, Makabe KW, Yamazaki H, Hayashi SI, Kunisada T. Characterization of a novel member of the FGFR family, HrFGFR, in Halocynthia roretzi. Biochem Biophys Res Commun. 2000;275:503-8. Kim GJ, Nishida H. Role of the FGF and MEK signaling pathway in the ascidian embryo. Dev Growth Differ. 2001;43:521-33. Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development. 1999;126:4691-701. Klambt C, Glazer L, Shilo BZ. Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes & Development. 1992;6:1668-78. Krause M, Liu J. Somatic muscle specification during embryonic and post-embryonic development in the nematode C. elegans. WIREs Dev Biol. 2012;1:203-14. Kulahin N, Li S, Hinsby A, Kiselyov V, Berezin V, Bock E. Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor. Mol Cell Neurosci. 2008;37:528-36. Kume T, Jiang HY, Topczewska JM, Hogan BLM. The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes & Development. 2001;15:2470-82. Lacalli TC. The emergence of the chordate body plan: some puzzles and problems. Acta Zoologica. 2010;91:4-10. Lapraz F, Rottinger E, Duboc V, Range R, Duloquin L, Walton K, Wu SY, Bradham C, Loza MA, Hibino T, Wilson K, Poustka A, Mcclay D, Angerer L, Gache C, Lepage T. RTK and TGF-beta signaling pathways genes in the sea urchin genome. Dev Biol. 2006;300:132-52. Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP. Structure of a Fibronectin Type III Domain from Tenascin Phased by MAD Analysis of the Selenomethionyl Protein. Science. 1992;258:987-91. Leclère L, Röttinger E. Diversity of cnidarian muscles: function, anatomy, development and regeneration. Frontiers in Cell and Developmental Biology. 2017;4: Lee PL, Johnson DE, Cousens LS, Fried VA, Williams LT. Purification and Complementary DNA Cloning of a Receptor for Basic Fibroblast Growth Factor. Science. 1989;245:57-60. Leptin M, Grunewald B. Cell shape changes during gastrulation in Drosophila. Development. 1990;110:73-84. Leptin M. Twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes & Development. 1991;5:1568-76. Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43:D257-60. Lin CY, Tung CH, Yu JK, Su YH. Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava. J Exp Zool B Mol Dev Evol. 2016;326:47-60. Little E, Bork P, Doolittle RF. Tracing the spread of fibronectin type iii domains in bacterial glycohydrolases. J Mol Evol. 1994;39:631-43. Lo TW, Branda CS, Huang P, Sasson IE, Goodman SJ, Stern MJ. Different isoforms of the C. elegans FGF receptor are required for attraction and repulsion of the migrating sex myoblasts. Dev Biol. 2008;318:268-75. Lowe CJ, Tagawa K, Humphreys T, Kirschner M, Gerhart J. Hemichordate embryos: Procurement, culture, and basic methods. Development of Sea Urchins, Ascidians, and Other Invertebrate Deuterostomes: Experimental Approaches. 2004;74:171-+. Luo YJ, Su YH. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol. 2012;10:e1001402. Mahlapuu M, Ormestad M, Enerback S, Carlsson P. The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development. 2001;128:155-66. Manzanares M, Locascio A, Nieto MA. The increasing complexity of the Snail gene superfamily in metazoan evolution. Trends in Genetics. 2001;17:178-81. Marlow H, Tosches MA, Tomer R, Steinmetz PR, Lauri A, Larsson T, Arendt D. Larval body patterning and apical organs are conserved in animal evolution. BMC Biol. 2014;12:7. Matus DQ, Thomsen GH, Martindale MQ. FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Development Genes and Evolution. 2007;217:137-48. Matus DQ, Thomsen GH, Martindale MQ. FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev Genes Evol. 2007;217:137-48. Mazet F, Amemiya CT, Shimeld SM. An ancient Fox gene cluster in bilaterian animals. Curr Biol. 2006;16:R314-6. Mccoon PE, Angerer RC, Angerer LM. SpFGFR, a new member of the fibroblast growth factor receptor family, is developmentally regulated during early sea urchin development. J Biol Chem. 1996;271:20119-25. Miyamoto N, Nakajima Y, Wada H, Saito Y. Development of the nervous system in the acorn worm Balanoglossus simodensis: insights into nervous system evolution. Evol Dev. 2010;12:416-24. Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 2005;16:107-37. Nielsen C. Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zool B Mol Dev Evol. 2004;302:35-68. Nielsen C. Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. J Exp Zool B Mol Dev Evol. 2005;304:401-47. Nieto MA, Bennett MF, Sargent MG, Wilkinson DG. Cloning and developmental expression of sna, a murine homolog of the Drosophila-snail gene. Development. 1992;116:227-37. Ota S, Tonou-Fujimori N, Yamasu K. The roles of the FGF signal in zebrafish embryos analyzed using constitutive activation and dominant-negative suppression of different FGF receptors. Mech Dev. 2009;126:1-17. Oulion S, Bertrand S, Escriva H. Evolution of the FGF gene family. Int J Evol Biol. 2012;2012:298147. Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ. Ancient deuterostome origins of vertebrate brain signalling centres. Nature. 2012;483:289-94. Parameswaran M, Tam PP. Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet. 1995;17:16-28. Partanen J, P.Makela T, Eerola E, Korhonen J, Hirvonen H, Claesson-Weish L, Alitalo K. FGFR-4, a novel acidic fibroblast growth factor eceptor with a distinc texpression pattern. EMBO J. 1991;10:1347-54. Pasquale EB, Singer SJ. Identification of a developmentally regulated protein-tyrosine kinase by using anti-phosphotyrosine antibodies to screen a cDNA expression library. Proc Nat Acad Sci USA. 1989;86:5449-53. Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785-6. Peterson KJ, Cameron RA, Tagawa K, Satoh N, Davidson EH. A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development. 1999;126:85-95. Popovici C, Roubin R, Coulier F, Birnbaum D. An evolutionary history of the FGF superfamily. BioEssays. 2005;27:849-57. Rebscher N, Deichmann C, Sudhop S, Fritzenwanker JH, Green S, Hassel M. Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR. Dev Genes Evol. 2009;219:455-68. Reid HH, Wilks AF, Bernard O. Two forms of the basic fibroblast growth factor receptor-like mRNA are expressed in the developing mouse brain. Proc Nat Acad Sci USA. 1990;87:1596-600. Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U. FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development. 2008;135:1761-9. Rottinger E, Saudemont A, Duboc V, Besnardeau L, Mcclay D, Lepage T. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis of the skelton and regulate gastrulation during sea urchin development. Development. 2008;135:353-65. Rottinger E, Lowe CJ. Evolutionary crossroads in developmental biology: hemichordates. Development. 2012;139:2463-75. Rottinger E, Dubuc TQ, Amiel AR, Martindale MQ. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open. 2015;4:830-42. Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, Program NCS, Smith SA, Putnam NH, Haddock SH, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342:1242592. Sato A, Rickards B, Holland PWH. The origins of graptolites and other pterobranchs: a journey from 'Polyzoa'. Lethaia. 2008;41:303-16. Satou Y, Imai KS, Satoh N. Fgf genes in the basal chordate Ciona intestinalis. Dev Genes Evol. 2002;212:432-8. Satou Y, Sasakura Y, Yamada L, Imai KS, Satoh N, Degnan B. A genomewide survey of developmentally relevant genes in Ciona intestinalis. V. Genes for receptor tyrosine kinase pathway and Notch signaling pathway. Dev Genes Evol. 2003;213:254-63. Schoenwolf GC, Garcia-Martinez V, Dias MS. Mesoderm movement and fate during avian gastrulation and neurulation. Dev Dyn. 1992;193:235-48. Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc Nat Acad Sci USA. 1998;95:5857-64. Selleck MA, Stern CD. Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. Development. 1991;112:615-26. Shimauchi Y, Murakami SD, Satoh N. FGF signals are involved in the differentiation of notochord cells and mesenchyme cells of the ascidian Halocynthia roretzi. Development. 2001;128:2711-21. Shishido E, Higashijima SI, Emori Y, Saigo K. Two FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development. 1993;117:751-61. Simakov O, Kawashima T, Marletaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F, Yue JX, Chen YC, Freeman RM, Jr., Sasaki A, Hikosaka-Katayama T, Sato A, Fujie M, Baughman KW, Levine J, Gonzalez P, Cameron C, Fritzenwanker JH, Pani AM, Goto H, Kanda M, Arakaki N, Yamasaki S, Qu J, Cree A, Ding Y, Dinh HH, Dugan S, Holder M, Jhangiani SN, Kovar CL, Lee SL, Lewis LR, Morton D, Nazareth LV, Okwuonu G, Santibanez J, Chen R, Richards S, Muzny DM, Gillis A, Peshkin L, Wu M, Humphreys T, Su YH, Putnam NH, Schmutz J, Fujiyama A, Yu JK, Tagawa K, Worley KC, Gibbs RA, Kirschner MW, Lowe CJ, Satoh N, Rokhsar DS, Gerhart J. Hemichordate genomes and deuterostome origins. Nature. 2015;527:459-65. Skah S, Uchuya-Castillo J, Sirakov M, Plateroti M. The thyroid hormone nuclear receptors and the Wnt/beta-catenin pathway: An intriguing liaison. Dev Biol. 2017;422:71-82. Small EM, Warkman AS, Wang DZ, Sutherland LB, Olson EN, Krieg PA. Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development. 2005;132:987-97. Stamatakis A. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics. 2014; Stathopoulos A, Tam B, Ronshaugen M, Frasch M, Levine M. Pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev. 2004;18:687-99. Steinmetz PR, Kraus JE, Larroux C, Hammel JU, Amon-Hassenzahl A, Houliston E, Worheide G, Nickel M, Degnan BM, Technau U. Independent evolution of striated muscles in cnidarians and bilaterians. Nature. 2012;487:231-4. Stern MJ, Horvitz HR. A normally attractive cell interaction is repulsive in two C. elegans mesodermal cell migration mutants. Development. 1991;113:797-803. Strathmann R, Bonar D. Ciliary Feeding of Tornaria Larvae of Ptychodera flava (Hemichordata-Enteropneusta). Marine Biology. 1976;34:317-24. Sun X, Meyers EN, Lewandoski M, Martin GR. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes & Development. 1999;13:1834-46. Swalla BJ, Smith AB. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philos Trans R Soc Lond B Biol Sci. 2008;363:1557-68. Tagawa K, Nishino A, Humphreys T, Satoh N. The Spawning and early development of the hawaiian acorn worm (Hemichordate), Ptychodera flava. Zoolog Sci. 1998;15:85-91. Tagawa K, Arimito A, Sasaki A, Izumi M, Fujita S, Humphreys T, Fujiyama A, Kagoshima H, Shin IT, Kohara Y, Satoh N, Kawashima T. A cDNA resource for gene expression studies of a hemichordate, Ptychodera flava. Zoolog Sci. 2014;31:414-20. Taguchi S, Tagawa K, Humphreys T, Nishino A, Satoh N, Harada Y. Characterization of a hemichordate fork head/HNF-3 gene expression. Dev Genes Evol. 2000;210:11-7. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-9. Thompson JD, Higgins DG, Gibson T. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-468-. Tsyguelnaia I, Doolittle RF. Presence of a Fibronectin Type III Domain in a Plant Protein. J Mol Evol. 1998;46:612_14. Wilm B, James RG, Schultheiss TA, Hogan BLM. The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Developmental Biology. 2004;271:176-89. Wu SY, Mcclay DR. The Snail repressor is required for PMC ingression in the sea urchin embryo. Development. 2007;134:1061-70. Yasuo H, Hudson C. FGF8/17/18 functions together with FGF9/16/20 during formation of the notochord in Ciona embryos. Dev Biol. 2007;302:92-103.
摘要: Mesoderm is a crucial germ layer that contributes to the complexity of bilaterian animals. In chordates, mesodermal cells are first specified into dorsal notochord to support the body and bilateral somites that later differentiate into muscles. These two mesodermal structures are defining features of chordates and are believed to contribute to a better motility for their tadpole-type larvae comparing to non-chordate larvae that propel by cilia. Studies in various chordate species have demonstrated that fibroblast growth factor (FGF) signaling is essential for notochord development through the activation of brachyury at notochord in vertebrates and ascidian. FGF signaling also regulates somite and muscle development in vertebrates but not the formation of trunk muscle in ascidian. In non-chordate deuterostome such as sea urchin embryos, FGF signaling is required for muscle development, but not the expression of brachyury. The functional differences of FGF signaling in controlling muscle development lead to ambiguity in the ancient role of FGF signaling in deuterostomes, and how FGF signaling had evolved to a new function in controlling notochord development through brachyury in chordates. In order to understand the role of FGF signaling during deuterostome evolution, we investigated functions of FGF signaling in mesoderm development during embryogenesis and metamorphosis in a non-chordate marine animal Ptychodera flava, an indirect-developing hemichordate that possess larval morphology similar to echinoderms and adult body features that resemble chordates. We have identified five FGF ligands and three FGF receptors in P. flava. Phylogenetic analyses revealed that hemichordates possess a conserved FGF8/17/18 in addition to several putative hemichordate-specific FGFs. Further functional studies showed that the mesodermal cell fate is specified at the early gastrula stage, and then theses cells are differentiated stepwise into the hydroporic canal, the pharyngeal muscle, and the muscle string; notably, formation of the last two muscular structures are regulated by FGF signaling. Moreover, the transcription levels of FGF ligands and receptors were significantly increased during metamorphosis, and augmentation of FGF signaling accelerated the process, suggesting its' role in facilitating the transformation from cilia-driven swimming larvae into muscle-driven worms. These results support the ancestral role of FGF signaling in muscle development in deuterostomes. Further studies are in progress for elucidating how the novel role of FGF signaling in notochord development had evolved from its ancestral role in the lineage leading to chordates.
URI: http://hdl.handle.net/11455/97766
文章公開時間: 2019-01-30
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.