Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97767
標題: 管花肉蓯蓉中松果菊苷具有類飢餓素刺激生長激素分泌之活性分析
Bioactivity of Echinacoside in Cistanche tubulosa, mimicking ghrelin to stimulate growth hormone secretion
作者: 吳婕如
Chieh-Ju Wu
關鍵字: 管花肉蓯蓉
苯乙醇苷類
大鼠腦下垂體初代細胞
生長激素
飢餓素
Cistanche tubulosa
phenylethanoid glycosides
primary pituitary cell culture
growth hormone
ghrelin
引用: 1. Committee, C.P., Chinese Pharmacopoeia. Chemical and Industrial Press, 2005. part I 2005 Edition: p. 126. 2. Tu, P., et al., Analysis of phenylethanoid glycosides of Herba Cistanchis by RP-HPLC. Yao xue xue bao= Acta pharmaceutica Sinica, 1997. 32(4): p. 294-300. 3. Tu, P.F., et al., Arylethyl (= phenylethanoid) glycosides and oligosaccharide from the stem of Cistanche tubulosa. Helvetica chimica acta, 2006. 89(5): p. 927-935. 4. Lei, L., Z.-h. Song, and P.-f. Tu, Advances in research of chemical constituents in plants of Cistanche Hoffing. et Link. Chinese Traditional and Herbal Drugs, 2003. 34(5): p. 473-476. 5. Jiang, Y. and P.-F. Tu, Analysis of chemical constituents in Cistanche species. Journal of chromatography A, 2009. 1216(11): p. 1970-1979. 6. Li, Y., et al., Screening and identification of three typical phenylethanoid glycosides metabolites from Cistanches Herba by human intestinal bacteria using UPLC/Q-TOF-MS. Journal of pharmaceutical and biomedical analysis, 2016. 118: p. 167-176. 7. Yin, D. and K. Chen, The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions. Experimental gerontology, 2005. 40(6): p. 455-465. 8. Onyango, I.G., J. Dennis, and S.M. Khan, Mitochondrial dysfunction in Alzheimer's disease and the rationale for bioenergetics based therapies. Aging and disease, 2016. 7(2): p. 201. 9. Sesti, F., S. Liu, and S.-Q. Cai, Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends in cell biology, 2010. 20(1): p. 45-51. 10. Harraan, D., Aging: a theory based on free radical and radiation chemistry. 1955. 11. Fulop, T., et al., On the immunological theory of aging, in Aging. 2014, Karger Publishers. p. 163-176. 12. Luo, S., Chemical constituents of Cistanche deserticola. Zhong yao tong bao (Beijing, China: 1981), 1986. 11(11): p. 41. 13. Weinert, B.T. and P.S. Timiras, Invited review: Theories of aging. Journal of applied physiology, 2003. 95(4): p. 1706-1716. 14. Konar, A., P. Singh, and M.K. Thakur, Age-associated cognitive decline: insights into molecular switches and recovery avenues. Aging and disease, 2016. 7(2): p. 121. 15. Chen, S.Y., Jia, H.W., Preliminary study on the biological characteristics and utilization of Pugionium cornutum. Sci Tech Info Soil Water Conserv, (5): p. 41-42. 16. Z.H. Song, L.L., P.F. Tu, Chin. Trad. Herb. Drugs. 2003(34): p. p. append. 1. 17. Sato, T., Kozima, S., Kobayashi, K., Kobayashi, H., Pharmacological studies on Cistanchis Herba. I. Effects of the constituents of cistanchis herba on sex and learning behavior in chronic stress mice. 1985 Volume 105 Issue 12 Pages 1131-1144. 18. Tian, X.-F. and X.-P. Pu, Phenylethanoid glycosides from Cistanches salsa inhibit apoptosis induced by 1-methyl-4-phenylpyridinium ion in neurons. Journal of ethnopharmacology, 2005. 97(1): p. 59-63. 19. Bing Zhang, P.M., Junfeng Wang, Some Recent Developments in γ-ray Burst Afterglow and Prompt Emission Models. Access Symposium - International Astronomical Union, 2003. 214: p. 311-320. 20. Zhang, B., Jia, P., Huang, M., Passive vibration control of image blur resulting from mechanical vibrations on moving vehicles. Optical Technique. 29(3): p. 281-283. 21. Ebringerová, A., Hromádková, Z., Machová, E., Naran, R., Hříbalová, V., Isolation and characterization of mitogenic pectic polysaccharides from Cistanche deserticola Y. C. Ma. Chemical Papers, 1997. 51(5): p. 289-294. 22. Ebringerová, A., Hromádková, Z., Hřibalová, V., Hirsch, J., An immunomodulating pectic arabinogalactan from roots of Cistanche deserticola. Chemical Papers, 2002. 56(5): p. 320-325. 23. Chen, W., et al., Echinacoside, a phenylethanoid glycoside from Cistanche deserticola, extends lifespan of Caenorhabditis elegans and protects from Aβ-induced toxicity. Biogerontology, 2018. 19(1): p. 47-65. 24. Rudman, D., et al., Effects of human growth hormone in men over 60 years old. New England Journal of Medicine, 1990. 323(1): p. 1-6. 25. Liu, H., et al., Systematic review: the safety and efficacy of growth hormone in the healthy elderly. Annals of Internal Medicine, 2007. 146(2): p. 104-115. 26. Giordano, R., et al., Growth hormone treatment in human ageing: benefits and risks. HORMONES-ATHENS-, 2008. 7(2): p. 133. 27. Sattler, F.R., Growth hormone in the aging male. Best practice & research Clinical endocrinology & metabolism, 2013. 27(4): p. 541-555. 28. Hsieh, S.-K., et al., Identification of biosynthetic intermediates of teaghrelins and teaghrelin-like compounds in oolong teas, and their molecular docking to the ghrelin receptor. journal of food and drug analysis, 2015. 23(4): p. 660-670. 29. 羅元浩, Teaghrelin and emoghrelin, active ingredients in Chin-shin oolong tea and Heshouwu, mimic ghrelin to stimulate growth hormone secretion. 2015. 30. Lo, Y.-H., et al., Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor. Journal of agricultural and food chemistry, 2014. 62(22): p. 5085-5091. 31. Hsieh, S.-K., et al., Ginkgoghrelins, unique acylated flavonoid diglycosides in Folium Ginkgo, stimulate growth hormone secretion via activation of the ghrelin receptor. Journal of ethnopharmacology, 2016. 193: p. 237-247. 32. T.B. Luo, Y.N.C., W. Ren, Y.M. Zhon, W.Z. Zhong,, Arid Zone Res. 19 (2002)56. 33. Al-Snafi, A.E., Medicinal plants with central nervous effects (part 2): plant based review. IOSR Journal of Pharmacy, 2016. 6(8): p. 52-75. 34. D.Y. Tan, Q.S.G., C.L. Wang, , Forest Resour. Manage. 2 (2004) 29. 35. R.H. Zhu, Z.M.L., J., Hunan Forest Sci. Tech. 27 (2000) 19. 36. Qiao, X., H. Wang, and Y. Guo, Study on conditions of seed germination of Cistanche. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 2007. 32(18): p. 1848-1850. 37. Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia, 2010. I, Chemical Industrial Press, Beijing (2010), p. 126pp. 38. He, W., et al., Preliminary study on the male hormone-like function of Cistanche deserticola. Chin J Chin Mater Med, 1996. 21(5). 39. H. Karasawa, J.K. and Yakugaku Zasshi. 103 (1983), p. 508. 40. Li, X., et al., Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae). PloS one, 2013. 8(3): p. e58747. 41. P.F. Tu, Y.P.H., Z.C. Lou, Chin. , Trad. Herb. Drugs. 4 (1994) 205. 42. T u P F, H.e.Y.P., Lou Z C., Survey and prot ection of m edicinal resources of desertliving Cistanche ( Cistanche deserticola ). Chin T radi H erb Dr ugs (中草藥), 1994. 24( 4) : 205-208. 43. Editing, C.P.C., Chinese Pharmacopoeia (part I, 2000 edition), 2000. Chemical and Industrial Publisher (2000) p. 103. 44. Editing, C.P.C., Chinese Pharmacopoeia. Chemical and Industrial Publisher, 2005. part I, 2005 edition p. 90. 45. P.F. Tu, B.W., T. Deyama, Z.G. Zhang, Z.C. Lou, Analysis of phenylethanoid glycosides of Herba cistanchis by RP-HPLC. Acta Pharm. Sinica, 1997. 32 (4): p. 294-300. 46. Tu, P.-F., Song, Z.-H., Shi, H.-M., Jiang, Y., Zhao, Y.-Y., Arylethyl (=phenylethanoid) glycosides and oligosaccharide from the stem of Cistanche tubulosa. Acta Pharmaceutica Sinica, 2006. 32(4): p. 294-300. 47. Wu, X.-M. and P.-F. Tu, Isolation and characterization of α-(1→ 6)-glucans from Cistanche deserticola. Journal of Asian natural products research, 2005. 7(6): p. 823-828. 48. Jiang, Y., et al., Differentiation of Herba Cistanches by fingerprint with high-performance liquid chromatography–diode array detection–mass spectrometry. Journal of chromatography A, 2009. 1216(11): p. 2156-2162. 49. Kosikova, B., A. Ebringerová, and R. Naran, Characterization of Lignin-Carbohydrate Fractions Isolated from the Wood Parasite Cistance deserticola YC Ma. Holzforschung, 1999. 53(1): p. 33-38. 50. Lei, L., Song, Z.H., Tu, P.F., Advances in research of chemical constituents in plants of Cistanche Hoffing. Chin Tradit Herb Drugs. 34(5): p. 473-476. 51. Zhao, W., et al., Structural analysis of water-soluble polysaccharide SPA isolated from the stem of the Cistanche deserticola Ma. Chem J Chinese U, 2005. 26(3): p. 461-463. 52. Dong, Q., et al., Structural characterization and immunological activity of two cold-water extractable polysaccharides from Cistanche deserticola YC Ma. Carbohydrate research, 2007. 342(10): p. 1343-1349. 53. Jimenez, C. and R. Riguera, Phenylethanoid glycosides in plants: structure and biological activity. Natural Product Reports, 1994. 11(6): p. 591-606. 54. Georgiev, M., et al., Antioxidant and cholinesterases inhibitory activities of Verbascum xanthophoeniceum Griseb. and its phenylethanoid glycosides. Food chemistry, 2011. 128(1): p. 100-105. 55. Kirmizibekmez, H., et al., Iridoid, phenylethanoid and flavonoid glycosides from Sideritis trojana. Fitoterapia, 2012. 83(1): p. 130-136. 56. Xue, Z. and B. Yang, Phenylethanoid glycosides: Research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules, 2016. 21(8): p. 991. 57. Lu, D., et al., Quantitative analysis of Cistanches Herba using high‐performance liquid chromatography coupled with diode array detection and high‐resolution mass spectrometry combined with chemometric methods. Journal of separation science, 2013. 36(12): p. 1945-1952. 58. Zhou, J., et al., Two-phase hollow fiber liquid phase microextraction based on magnetofluid for simultaneous determination of Echinacoside, Tubuloside B, Acteoside and Isoacteoside in rat plasma after oral administration of Cistanche salsa extract by high performance liquid chromatography. Journal of pharmaceutical and biomedical analysis, 2014. 94: p. 30-35. 59. Morikawa, T., et al., Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa1. Bioorganic & medicinal chemistry, 2010. 18(5): p. 1882-1890. 60. Yoshikawa, M., et al., Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanche tubulosa. Bioorganic & medicinal chemistry, 2006. 14(22): p. 7468-7475. 61. Li, Z., et al., Herba Cistanche (Rou Cong-Rong): One of the best pharmaceutical gifts of traditional Chinese medicine. Frontiers in pharmacology, 2016. 7: p. 41. 62. Wang, T., X. Zhang, and W. Xie, Cistanche deserticola YC Ma,' Desert ginseng': a review. The American journal of Chinese medicine, 2012. 40(06): p. 1123-1141. 63. Xiong, Q., et al., Antioxidative effects of phenylethanoids from Cistanche deserticola. Biological and Pharmaceutical Bulletin, 1996. 19(12): p. 1580-1585. 64. Geng, X., et al., Neuroprotective effects of phenylethanoid glycosides from Cistanches salsa against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic toxicity in C57 mice. Biological and Pharmaceutical Bulletin, 2004. 27(6): p. 797-801. 65. Shimoda, H., et al., The hypocholesterolemic effects of Cistanche tubulosa extract, a Chinese traditional crude medicine, in mice. The American journal of Chinese medicine, 2009. 37(06): p. 1125-1138. 66. Pennacchio, M., et al., The effect of verbascoside on cyclic 3′, 5′-adenosine monophosphate levels in isolated rat heart. European journal of pharmacology, 1996. 305(1-3): p. 169-171. 67. Pennacchio, M., et al., Cardioactive compounds from Eremophila species. Journal of ethnopharmacology, 1996. 53(1): p. 21-27. 68. Xiong, W.-T., et al., Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in type 2 diabetic db/db mice. Journal of ethnopharmacology, 2013. 150(3): p. 935-945. 69. Wong, H.S., et al., Cistanches Herba reduces the weight gain in high fat diet-induced obese mice possibly through mitochondrial uncoupling. Journal of Functional Foods, 2014. 10: p. 292-304. 70. Xiong, Q., Kadota, S., Tani, T., Namba, T., Antioxidative effects of phenylethanoids from Cistanche deserticola. Biological and Pharmaceutical Bulletin, 1996. 19(12): p. 1580-1585. 71. H.M. Kan, D.T.G., X.W. Wang, L.L. Li, X.F. Wang, 1995(18): p. 83. 72. Xiong, Q., et al., Hepatoprotective activity of phenylethanoids from Cistanche deserticola. Planta medica, 1998. 64(02): p. 120-125. 73. Wang, X.-Y., et al., Lack of association between human longevity and polymorphisms of IL-1 cluster, IL-6, IL-10 and TNF-α genes in Finnish nonagenarians. Mechanisms of ageing and development, 2001. 123(1): p. 29-38. 74. 姚康德, 董.崔.田., 天然環烯醚萜類化合物研究進展. Chinese Traditional and Herbal Drugs, 2011. 42(1). 75. Ze-Dong, N., et al., Anti-inflammatory iridoids from the stems of Cistanche deserticola cultured in Tarim Desert. Chinese journal of natural medicines, 2016. 14(1): p. 61-65. 76. Zeng, Q., J. Mao, and Z. Lv, Purification of Cistanche polysaccharides and its regulation of T cell function research. J Zhejiang Med Univ, 1998. 27(3): p. 108-111. 77. Jiang, M.-H., L. Zhu, and J.-G. Jiang, Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert opinion on therapeutic targets, 2010. 14(12): p. 1367-1402. 78. Kaur, C. and H.C. Kapoor, Anti‐oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science & Technology, 2002. 37(2): p. 153-161. 79. Qu, H., et al., Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells. The Journal of nutrition, 2005. 135(3): p. 598-602. 80. Lin, W.-Y., et al., Molecular pathways related to the longevity promotion and cognitive improvement of Cistanche tubulosa in Drosophila. Phytomedicine, 2017. 26: p. 37-44. 81. Xuan, G. and C. Liu, Research on the effect of phenylethanoid glycosides (PEG) of the Cistanche deserticola on anti-aging in aged mice induced by D-galactose. Zhong yao cai= Zhongyaocai= Journal of Chinese medicinal materials, 2008. 31(9): p. 1385-1388. 82. Lei, L. and P. Tu, Echinacoside anti-aging action mechanism research. Acta Biophys Sin, 2004. 20(3): p. 183-187. 83. Taixin, Y., et al., Introducing experiments of Cistanche tubulosa in north China plain [J]. Journal of China Agricultural University, 2005. 1: p. 008. 84. Liu, X., J. Li, and B. Du. Echinacoside on rat liver cancer cell 0 GJIC function and connect the influence of protein expression. in Theory and Application Study of Traditional Chinese Medicine: Anhui Inheritance and Innovation of TCM Doctor Technology Forum. 2008. 85. Wu, C.-R., H.-C. Lin, and M.-H. Su, Reversal by aqueous extracts of Cistanche tubulosa from behavioral deficits in Alzheimer's disease-like rat model: relevance for amyloid deposition and central neurotransmitter function. BMC complementary and alternative medicine, 2014. 14(1): p. 202. 86. P.F. Tu, Z.H.S., L. Lei,. CN 20030304. 87. Geng, X., et al., Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson's disease. European Journal of Pharmacology, 2007. 564(1-3): p. 66-74. 88. Pu, X., et al., Acteoside from Cistanche salsa inhibits apoptosis by 1-methyl-4-phenylpyridinium ion in cerebellar granule neurons. Planta medica, 2003. 69(01): p. 65-66. 89. Pu, X., Li, X., Li, H., Tu, P., Song, Z., Li, C., Campneoside 11 of Cistanche tubulosa (Schenk) R. Wight protects neurons from apoptosis induced by neurotoxin 1-methyl-4-phenylpyridinium (MPP )+. Beijing Daxue Xuehao, Yixuehan. 23: p. 217-220. 90. Sheng, G., et al., Tubuloside B from Cistanche salsa rescues the PC12 neuronal cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis and oxidative stress. Planta medica, 2002. 68(11): p. 966-970. 91. Deng, M., et al., Echinacoside rescues the SHSY5Y neuronal cells from TNFα-induced apoptosis. European journal of pharmacology, 2004. 505(1-3): p. 11-18. 92. Deng, M., Zhao, J.-Y., Ju, X.-D., Tu, P.-F., Jiang, Y., Li, Z.-B., Protective effect of tubuloside B on TNFα-induced apoptosis in neuronal cells. Acta Pharmacologica Sinica, October 2004. 25(10): p. 1276-1284. 93. Guo, Q., et al., An open-label, nonplacebo-controlled study on Cistanche tubulosa glycoside capsules (Memoregain®) for treating moderate Alzheimer's Disease. American Journal of Alzheimer's Disease & Other Dementias®, 2013. 28(4): p. 363-370. 94. Feng, T., et al., The Effect and Mechanism of Echinacoside on SAM-P/8's Learning and Memory Ability [J]. Laboratory Animal Science & Management, 2006. 2. 95. Jiang, J. and M. Shi. CoAuto: A formal model for cooperative processes. in International Conference on Grid and Cooperative Computing. 2003. Springer. 96. LIANG, G., Comprehensive recovery of valuable metals from cyanide leach residue. Multipurpose Utilization of Mineral Resources, 2001. 3: p. 35-37. 97. Luo, L., et al., Effects of glycosides of cistanche on learning and memory function in rat undertaken bilateral common carotid artery ligation and its possible mechanism. 2007. 98. Luo, L., et al., Protective effects of glycosides of cistanche on behaviors and memory impairment mice induced by aluminum trichloride. 2007. 99. WANG, X.-y., et al., Influence of gloycosides of cistanche on the ultrastructure of hippocampus of the D-galactose induced brain aging model mice. Chinese Journal of Behavioral Medical Science, 2005. 11: p. 002. 100. Gao, C., et al., Effect of Cistanche glycosides on learning and memory impairment in vascular dementia rat. Chin Tradit Herb Drugs, 2005. 36(12): p. 1852. 101. Chen, H., et al., Echinacoside prevents the striatal extracellular levels of monoamine neurotransmitters from diminution in 6-hydroxydopamine lesion rats. Journal of ethnopharmacology, 2007. 114(3): p. 285-289. 102. Gao, C., C. Wang, and G. Wu, Cistanche total glycosides on the influence of the vascular dementia rats learning and memory and the mechanism research. Chin Herb Med, 2005. 36(12): p. 1852-1855. 103. Wang, T., et al., Cistanche tubulosa ethanol extract mediates rat sex hormone levels by induction of testicular steroidgenic enzymes. Pharmaceutical biology, 2016. 54(3): p. 481-487. 104. Xu, H., et al., Desertliving Cistanche anti-aging action: a comparative study. Heilongjiang Medicine and Pharmacy, 2011. 34: p. 1-2. 105. Lu, C.-W., et al., Echinacoside, an active constituent of Herba Cistanche, suppresses epileptiform activity in hippocampal CA3 pyramidal neurons. The Korean Journal of Physiology & Pharmacology, 2018. 22(3): p. 249-255. 106. Thorner, M. and R. Nass, Human studies of growth hormone and aging. Pediatric endocrinology reviews: PER, 2007. 4(3): p. 233-234. 107. Dr Ben Green MRCPsych FHEA, C.P.a.H.S.L., Human Growth Hormone In The Treatment Of Biological Depression. 108. Rudman, D., Growth hormone, body composition, and aging. Journal of the American Geriatrics Society, 1985. 33(11): p. 800-807. 109. Meites, J., Neuroendocrine biomarkers of aging in the rat. Experimental gerontology, 1988. 23(4-5): p. 349-358. 110. FINKELSTEIN, J.W., et al., Age-related change in the twenty-four hour spontaneous secretion of growth hormone. The Journal of Clinical Endocrinology & Metabolism, 1972. 35(5): p. 665-670. 111. Ghigo, E., et al., Human aging and the GH-IGF-I axis. Journal of pediatric endocrinology & metabolism: JPEM, 1996. 9: p. 271-278. 112. Rudman, D., et al., Impaired growth hormone secretion in the adult population: relation to age and adiposity. The Journal of clinical investigation, 1981. 67(5): p. 1361-1369. 113. Iranmanesh, A., G. Lizarralde, and J.D. Veldhuis, Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. The Journal of Clinical Endocrinology & Metabolism, 1991. 73(5): p. 1081-1088. 114. Giustina, A. and J.D. Veldhuis, Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocrine reviews, 1998. 19(6): p. 717-797. 115. Drake, W.M., et al., Optimizing GH therapy in adults and children. Endocrine Reviews, 2001. 22(4): p. 425-450. 116. Sartorio, A., et al., Growth, growth hormone and cognitive functions. Hormone Research in Paediatrics, 1996. 45(1-2): p. 23-29. 117. Aleman, A., et al., Age-sensitive cognitive function, growth hormone and insulin-like growth factor 1 plasma levels in healthy older men. Neuropsychobiology, 2000. 41(2): p. 73-78. 118. Janssen, I., et al., Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. Journal of applied physiology, 2000. 89(1): p. 81-88. 119. Van Cauter, E., R. Leproult, and L. Plat, Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. Jama, 2000. 284(7): p. 861-868. 120. Weissberger, A.J., et al., Recombinant human growth hormone treatment in elderly patients undergoing elective total hip replacement. Clinical endocrinology, 2003. 58(1): p. 99-107. 121. Veldhuis, J.D. and D.M. Keenan, Model-based evaluation of growth hormone secretion, in Methods in enzymology. 2012, Elsevier. p. 231-248. 122. Kohno, D., et al., Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes, 2003. 52(4): p. 948-956. 123. Holloway, L., et al., Effects of recombinant human growth hormone on metabolic indices, body composition, and bone turnover in healthy elderly women. The Journal of Clinical Endocrinology & Metabolism, 1994. 79(2): p. 470-479. 124. Papadakis, M.A., et al., Growth hormone replacement in healthy older men improves body composition but not functional ability. Annals of internal medicine, 1996. 124(8): p. 708-716. 125. Johannsson, G., et al., Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure. The Journal of Clinical Endocrinology & Metabolism, 1997. 82(3): p. 727-734. 126. Franco, C., et al., Growth hormone treatment reduces abdominal visceral fat in postmenopausal women with abdominal obesity: a 12-month placebo-controlled trial. The Journal of Clinical Endocrinology & Metabolism, 2005. 90(3): p. 1466-1474. 127. Lange, K.H.W., et al., GH administration changes myosin heavy chain isoforms in skeletal muscle but does not augment muscle strength or hypertrophy, either alone or combined with resistance exercise training in healthy elderly men. The Journal of Clinical Endocrinology & Metabolism, 2002. 87(2): p. 513-523. 128. Compton, D.M., et al., Age-associated changes in cognitive function in highly educated adults: emerging myths and realities. International journal of geriatric psychiatry, 2000. 15(1): p. 75-85. 129. Van Dam, P., et al., Growth hormone, insulin-like growthfactor I and cognitive function in adults. Growth Hormone & IGF Research, 2000. 10: p. S69-S73. 130. Schneider, H.J., U. Pagotto, and G.K. Stalla, Central effects of the somatotropic system. European journal of endocrinology, 2003. 149(5): p. 377-392. 131. Kaufman, M., Growth hormone alters aging: study shows risks include diabetes, carpal tunnel syndrome. Washington Post, 2002. 13. 132. Perls, T.T., N.R. Reisman, and S.J. Olshansky, Provision or distribution of growth hormone for 'antiaging': clinical and legal issues. Jama, 2005. 294(16): p. 2086-2090. 133. Vance, M.L., Can growth hormone prevent aging? New England Journal of Medicine, 2003. 348(9): p. 779-780. 134. Gharib, H., et al., American Association of Clinical Endocrinologists medical guidelines for clinical practice for growth hormone use in adults and children--2003 update. Endocrine practice: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 2003. 9(1): p. 64. 135. Chan, J.M., et al., Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science, 1998. 279(5350): p. 563-566. 136. Howard, A.D., et al., A receptor in pituitary and hypothalamus that functions in growth hormone release. Science, 1996. 273(5277): p. 974-977. 137. Murray, C.D., et al., Ghrelin for the gastroenterologist: history and potential. Gastroenterology, 2003. 125(5): p. 1492-1502. 138. Tschöp, M., D.L. Smiley, and M.L. Heiman, Ghrelin induces adiposity in rodents. Nature, 2000. 407(6806): p. 908. 139. Nakazato, M., et al., A role for ghrelin in the central regulation of feeding. Nature, 2001. 409(6817): p. 194. 140. Cummings, D.E., et al., Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. New England Journal of Medicine, 2002. 346(21): p. 1623-1630. 141. Ueberberg, B., et al., Expression of ghrelin and its receptor in human tissues. Hormone and Metabolic Research, 2009. 41(11): p. 814-821. 142. Kojima, M., et al., Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999. 402(6762): p. 656. 143. Date, Y., et al., Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology, 2000. 141(11): p. 4255-4261. 144. Al Massadi, O., et al., Review of novel aspects of the regulation of ghrelin secretion. Current drug metabolism, 2014. 15(4): p. 398-413. 145. Bednarek, M.A., et al., Structure− function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a. Journal of medicinal chemistry, 2000. 43(23): p. 4370-4376. 146. Cassoni, P., et al., Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(4): p. 1738-1745. 147. Korbonits, M., et al., Ghrelin—a hormone with multiple functions. Frontiers in neuroendocrinology, 2004. 25(1): p. 27-68. 148. Callaghan, B. and J.B. Furness, Novel and conventional receptors for ghrelin, desacyl-ghrelin, and pharmacologically related compounds. Pharmacological reviews, 2014. 66(4): p. 984-1001. 149. Palyha, O.C., et al., Ligand activation domain of human orphan growth hormone (GH) secretagogue receptor (GHS-R) conserved from Pufferfish to humans. Molecular endocrinology, 2000. 14(1): p. 160-169. 150. Van Der Lely, A.J., et al., Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocrine reviews, 2004. 25(3): p. 426-457. 151. Jia, Y., et al., Expression of growth hormone secretagogue receptor type 1a in visceral vagal and spinal afferent pathways. Sheng li xue bao:[Acta physiologica Sinica], 2008. 60(1): p. 149-155. 152. Hattori, N., et al., GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(9): p. 4284-4291. 153. Gnanapavan, S., et al., The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. The Journal of Clinical Endocrinology & Metabolism, 2002. 87(6): p. 2988-2991. 154. Guan, X.-M., et al., Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Molecular brain research, 1997. 48(1): p. 23-29. 155. Yokote, R., et al., Molecular cloning and gene expression of growth hormone-releasing peptide receptor in rat tissues. Peptides, 1998. 19(1): p. 15-20. 156. Shuto, Y., et al., Generation of polyclonal antiserum against the growth hormone secretagogue receptor (GHS-R): evidence that the GHS-R exists in the hypothalamus, pituitary and stomach of rats. Life sciences, 2001. 68(9): p. 991-996. 157. Date, Y., et al., Central effects of a novel acylated peptide, ghrelin, on growth hormone release in rats. Biochemical and biophysical research communications, 2000. 275(2): p. 477-480. 158. Ariyasu, H., et al., Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(10): p. 4753-4758. 159. Cummings, D.E., et al., A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, 2001. 50(8): p. 1714-1719. 160. Masuda, Y., et al., Ghrelin stimulates gastric acid secretion and motility in rats. Biochemical and biophysical research communications, 2000. 276(3): p. 905-908. 161. De Ambrogi, M., S. Volpe, and C. Tamanini, Ghrelin: central and peripheral effects of a novel peptydil hormone. Medical Science Monitor, 2003. 9(9): p. RA217-RA224. 162. Dixit, V.D., et al., Ghrelin inhibits leptin-and activation-induced proinflammatory cytokine expression by human monocytes and T cells. The Journal of clinical investigation, 2004. 114(1): p. 57-66. 163. Kim, M.S., et al., The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes. Molecular Endocrinology, 2004. 18(9): p. 2291-2301. 164. Baldanzi, G., et al., Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. The Journal of cell biology, 2002. 159(6): p. 1029-1037. 165. Kim, S.W., et al., Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells. Bone, 2005. 37(3): p. 359-369. 166. Choi, K., et al., The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology, 2003. 144(3): p. 754-759. 167. Zhang, W., et al., Inhibition of adipogenesis by ghrelin. Molecular biology of the cell, 2004. 15(5): p. 2484-2491. 168. Bowers, C., et al., A study on the regulation of growth hormone release from the pituitaries of rats in vitro. Endocrinology, 1981. 108(3): p. 1071-1080. 169. Bowers, C., G. Reynolds, and F. Momany, New advances on the regulation of growth hormone (GH) secretion. International journal of neurology, 1984. 18: p. 188-205. 170. Momany, F., et al., Design, synthesis, and biological activity of peptides which release growth hormone in vitro. Endocrinology, 1981. 108(1): p. 31-39. 171. Momany, F., et al., Conformational energy studies and in vitro and in vivo activity data on growth hormone-releasing peptides. Endocrinology, 1984. 114(5): p. 1531-1536. 172. Smith, R.G., et al., Peptidomimetic regulation of growth hormone secretion. Endocrine reviews, 1997. 18(5): p. 621-645. 173. Bowers, C., GH releasing peptides-structure and kinetics. Journal of Pediatric Endocrinology and Metabolism, 1993. 6(1): p. 21-32. 174. Bowers, C.Y., Growth hormone-releasing peptide (GHRP). Cellular and Molecular Life Sciences CMLS, 1998. 54(12): p. 1316-1329. 175. Camanni, F., E. Ghigo, and E. Arvat, Growth hormone-releasing peptides and their analogs. Frontiers in neuroendocrinology, 1998. 19(1): p. 47-72. 176. Patchett, A., et al., Design and biological activities of L-163,191 (MK-0677): a potent, orally active growth hormone secretagogue. Proceedings of the National Academy of Sciences, 1995. 92(15): p. 7001-7005. 177. Chapman, I.M., et al., Stimulation of the growth hormone (GH)-insulin-like growth factor I axis by daily oral administration of a GH secretogogue (MK-677) in healthy elderly subjects. The Journal of Clinical Endocrinology & Metabolism, 1996. 81(12): p. 4249-4257. 178. Copinschi, G., et al., Effects of a 7-day treatment with a novel, orally active, growth hormone (GH) secretagogue, MK-677, on 24-hour GH profiles, insulin-like growth factor I, and adrenocortical function in normal young men. The Journal of Clinical Endocrinology & Metabolism, 1996. 81(8): p. 2776-2782. 179. Smith, R.G., et al., Modulation of pulsatile GH release through a novel receptor in hypothalamus and pituitary gland. Recent progress in hormone research, 1996. 51: p. 261-85; discussion 285-6. 180. Chapman, I.M., et al., Oral administration of growth hormone (GH) releasing peptide-mimetic MK-677 stimulates the GH/insulin-like growth factor-I axis in selected GH-deficient adults. The Journal of Clinical Endocrinology & Metabolism, 1997. 82(10): p. 3455-3463. 181. Hosoda, H. and K. Kangawa, Ghrelin measurement: present and perspectives, in Ghrelin. 2004, Springer. p. 225-236. 182. Akamizu, T. and K. Kangawa, Translational research on the clinical applications of ghrelin. Endocrine journal, 2006. 53(5): p. 585-591. 183. Nagaya, N., et al., Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2001. 280(5): p. R1483-R1487. 184. Raun, K., et al., Ipamorelin, the first selective growth hormone secretagogue. European journal of endocrinology, 1998. 139(5): p. 552-561. 185. Castaneda, T., et al., Ghrelin in the regulation of body weight and metabolism. Frontiers in neuroendocrinology, 2010. 31(1): p. 44-60. 186. Avau, B., et al., Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterology & Motility, 2013. 25(9): p. 720-732. 187. Camilleri, M. and A. Acosta, A ghrelin agonist fails to show benefit in patients with diabetic gastroparesis: let's not throw the baby out with the bath water. Neurogastroenterology & Motility, 2013. 25(11): p. 859-863. 188. Nass, R., et al., Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial. Annals of Internal Medicine, 2008. 149(9): p. 601-611. 189. 陳發奎, 雷.厲.宋.屠.吳., Separation of E chinacoside by Reversed-Phase Preparative Hih PerformanceL iquid Chromatography. chinese journal of chromatography, 2001. 第19卷第3期. 190. Yamazaki, M., et al., Regulational effect of ghrelin on growth hormone secretion from perifused rat anterior pituitary cells. Journal of neuroendocrinology, 2002. 14(2): p. 156-162. 191. Yang, J.M. and C.C. Chen, GEMDOCK: a generic evolutionary method for molecular docking. Proteins: Structure, Function, and Bioinformatics, 2004. 55(2): p. 288-304. 192. Rasmussen, S.G., et al., Structure of a nanobody-stabilized active state of the β 2 adrenoceptor. Nature, 2011. 469(7329): p. 175. 193. Moukhametzianov, R., et al., Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor. Proceedings of the National Academy of Sciences, 2011. 108(20): p. 8228-8232. 194. Shen, M.y. and A. Sali, Statistical potential for assessment and prediction of protein structures. Protein science, 2006. 15(11): p. 2507-2524. 195. Fiser, A. and R.K.G. Do, Modeling of loops in protein structures. Protein science, 2000. 9(9): p. 1753-1773. 196. Holst, B., et al., Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor. Molecular pharmacology, 2006. 70(3): p. 936-946. 197. Dixon, S.L. and K.M. Merz, One-dimensional molecular representations and similarity calculations: methodology and validation. Journal of Medicinal Chemistry, 2001. 44(23): p. 3795-3809. 198. Brooks, B.R., et al., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. Journal of computational chemistry, 1983. 4(2): p. 187-217. 199. Han, L., et al., Structural characterisation and identification of phenylethanoid glycosides from Cistanches deserticola YC Ma by UHPLC/ESI–QTOF–MS/MS. Phytochemical analysis, 2012. 23(6): p. 668-676. 200. 李晨賽默飛世爾科技(中國)有限公司, 張., 基於LTQ Orbitrap線性離子阱 - 靜電場軌道阱高分辨質譜的中藥目標類群成分發現,鑑定和中藥組學研究策略基於特徵類群苯乙醇苷類成分的肉蓯蓉品種區分. AN_C_LCMSMS_14_201509Y, 2015. 201. Wren, A., et al., The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology, 2000. 141(11): p. 4325-4328. 202. Otto, B., et al., Endogenous and exogenous glucocorticoids decrease plasma ghrelin in humans. European Journal of Endocrinology, 2004. 151(1): p. 113-117. 203. Lupien, S.J., et al., Beyond the stress concept: Allostatic load--a developmental biological and cognitive perspective. 2006. 204. Date, Y., et al., Ghrelin is present in pancreatic α-cells of humans and rats and stimulates insulin secretion. Diabetes, 2002. 51(1): p. 124-129. 205. Reed, J.A., et al., Mice with chronically increased circulating ghrelin develop age-related glucose intolerance. American Journal of Physiology-Endocrinology and Metabolism, 2008. 294(4): p. E752-E760. 206. Wortley, K.E., et al., Absence of ghrelin protects against early-onset obesity. The Journal of clinical investigation, 2005. 115(12): p. 3573-3578. 207. Zhao, T.-J., et al., Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proceedings of the National Academy of Sciences, 2010. 107(16): p. 7467-7472. 208. Rizzo, M., et al., A review of the cardiovascular and anti-atherogenic effects of ghrelin. Current Pharmaceutical Design, 2013. 19(27): p. 4953-4963. 209. Nagaya, N., et al., Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation, 2001. 104(12): p. 1430-1435. 210. Nagaya, N., et al., Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation, 2004. 110(24): p. 3674-3679. 211. Fukushima, N., et al., Ghrelin directly regulates bone formation. Journal of Bone and Mineral Research, 2005. 20(5): p. 790-798. 212. Morikawa, T., et al., Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. Journal of natural medicines, 2014. 68(3): p. 561-566. 213. Xue, J., Z. Canzhan, and A. Song, GW28-e0646 Echinacoside protects against high glucose-induced oxidative stress in vascular endothelial cells through Nrf2/HO-1 dependent pathway. Journal of the American College of Cardiology, 2017. 70(16 Supplement): p. C22-C23. 214. Chen, M., et al., Protective effects of echinacoside against anoxia/reperfusion injury in H9c2 cells via up-regulating p-AKT and SLC8A3. Biomedicine & Pharmacotherapy, 2018. 104: p. 52-59. 215. Cai, R.L., et al., Antifatigue activity of phenylethanoid‐rich extract from Cistanche deserticola. Phytotherapy research, 2010. 24(2): p. 313-315. 216. Müller, T.D., et al., Ghrelin. Molecular metabolism, 2015. 4(6): p. 437-460. 217. Moon, M., et al., Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. Neurotoxicity research, 2009. 15(4): p. 332-347. 218. Gahete, M.D., et al., Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. Journal of endocrinology, 2014. 220(1): p. R1-R24. 219. Ibáñez-Costa, A., et al., In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features. Scientific reports, 2015. 5: p. 8714. 220. Stefaniak, F., et al., Modeling of ribonucleic acid–ligand interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015. 5(6): p. 425-439.
摘要: 肉蓯蓉(Cistanche spp. )為中國典籍中珍貴的中藥之一,其補腎壯 陽、延年益壽、潤腸通便等記載,使其享有'沙漠人參'之美譽。近代 藥理學研究更指出其主要成分苯乙醇苷類(phenylethanoid glycosides;PhGs)具保肝、抗氧化、抗衰老、神經保護、免疫調節、增強學習記憶能力等功效,並以含量最高之松果菊苷(Echinacoside;ECH)作為品管標準。生長激素(growth hormone;GH)為人類生長及延緩老化所需之關鍵荷爾蒙,然而其直接施用易引起水腫、關節疼痛等副作用,故近年文獻中重視於開發更上游之荷爾蒙:飢餓素(ghrelin)及類飢餓素藥物(ghrelin-liked)來達到全面性調控生長激素、促進腸胃蠕動、增加食慾及記憶力等療效。本實驗室前人研究中發現類飢餓素成分:茶飢素(Teaghrelin)及銀杏飢素(Ginkgoghrelin),其分子結構與管花肉蓯蓉的 Echinacoside 相類似,根據先前分子對接(molecular docking)模擬後,其 glycosides 及 p-coumaric acid 官能基能與飢餓素接受器結合,達到與飢餓素(ghrelin)相同調控路徑,進而促進生長激素分泌之生理功效。故本實驗使用Sephadex LH-20管柱於管花肉蓯蓉萃取液(CTE)純化出Echinacoside,並透過活體 Sprague Dawley (SD)品系大鼠腦下垂體之初代細胞進行生長激素分泌測詴。以人工合成之飢餓素受器促效劑 (growth hormone-releasing peptide 6;GHRP-6)做為生長激素分泌之正對照組,於初步實驗結果中顯示(10-5-10-8 M )的濃度下 Echinacoside具促進分泌生長激素能力,並呈現藥物濃度依賴性。在 30 分鐘,Echinacoside 在 10-5 M 濃度下相較於正對照組有較高的分泌量。透過GHS-R1a antagonist 證明與 GHRP-6 走相同的分泌路徑。最後由分子對接(molecular docking)模擬,去臆測Echinacoside 與接受器互相鍵結的接位。進一步探討利用 Echinacoside 作為新類飢餓素藥物之可能性。
Cistanche spp. , the ginseng of desert, has been recorded to possess several biological activities, such as constipation relieving, longevity and aphrodisiac property in traditional Chinese pharmacopoeia. Recent pharmacological studies showed that the major active ingredients in Cistanche spp. are phenylethanoid glycosides (PhGs), which possess various effects, e.g., antioxidative, hepatoprotective and neuroprotective activities as well as enhancing learning capacity. Echinacoside (ECH) is the most abundant constituent in PhGs, and constantly regarded as a reference compound for the quality control in CT. Growth hormone is an essential hormone that promotes human growth and anti-aging; however, direct application of growth hormone indicates serious side effects like edema and arthralgia. Therefore, it has been searched for drugs that stimulate growth hormone secretion, such as ghrelin and ghrelin-liked molecules. In previous studies, two natural compounds, teaghrelin and ginkgoghrelin, showed biological activities similar to ghrelin. The chemical structure of ECH consisting two glucosides, one rhamnose, one caffeic acid, and one hydroxytyrosol is comparable to teaghrelin and Ginkgoghrelin. Therefore, I propose that ECH may be able to interact with ghrelin receptors. In this study, I purified ECH natural compound from CT by using Sephadex LH-20 column and then assayed growth hormone secretion by treating pituitary cells which were isolated from male Sprague−Dawley rats. Positive control of growth hormone-releasing hormone-6 (GHRP-6) is a synthetic analog of ghrelin which stimulated growth hormone secretion, and the result showed that the concentration (10-5 M -10-8 M) of ECH induced the secretion of growth hormone and have dose dependenced. At 30 minutes, Echinacoside had a higher secretion level in 10-5 M compared with positive control. To demonstrate, Echinacoside have the same secretory pathway as GHRP-6 by GHS-R1a antagonist. Finally, using molecular docking to simulate were performed to determine the binding sites between the Echinacoside and the receptor. Further explore the possibility of using Echinacoside as a new class of ghrelin drugs in the future.
URI: http://hdl.handle.net/11455/97767
文章公開時間: 2019-08-09
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.