Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97768
標題: 茶樹羥基肉桂醯轉移酶之功能及特性分析
Functional characterization of a hydroxycinnamoyl transferase (HCT) in tea plants (Camellia sinensis L.)
作者: 孫祺惠
Chi-Hui Sun
關鍵字: 
羥基肉桂醯轉移酶
環境逆境
代謝體學分析
Tea
Hydroxycinnamoyl transferase
Environmental stresses
Metabolomics
引用: 行政院農業委員會農糧署。(2016)。特用作物生產概況。http://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx. Accessed February 27, 2018. 交通部中央氣象局。(2018)。觀測資料查詢。 http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp. Accessed January 29, 2018. 李臺強。(2018)。品種特性簡介。行政院農業委員會茶葉改良場。https://www.tres.gov.tw/view.php?catid=1668. Accessed February 27, 2018. Chu, D. C., and Juneja, L. R. (1997) Chemical composition of green tea and its infusion. In 'Chemistry and Applications of Green Tea', ed. Yamamoto, T., Juneja, L. R., Chu, D. -C., and Kim, M. pp. 13-20. USA: CRC Press. Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., and Kazan, K. (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16: 3460-3479. Ashihara, H., Deng, W.-W., Mullen, W., and Crozier, A. (2010) Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71: 559-566. Bontpart, T., Cheynier, V., Ageorges, A., and Terrier, N. (2015) BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytol. 208: 695-707. Burhenne, K., Kristensen, B. K., and Rasmussen, S. K. (2003) A new class of N-Hydroxycinnamoyltransferases purification, cloning, and expression of a barley agmatine coumaroyltransferase. J. Biol. Chem. 278: 13919-13927. Chalker‐Scott, L. (1999) Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70: 1-9. Chowdhury, E. M., Choi, B. S., Park, S. U., Lim, H. -S., and Bae, H. (2012) Transcriptional analysis of hydroxycinnamoyl transferase (HCT) in various tissues of Hibiscus cannabinus in response to abiotic stress conditions. Plant Omics 5: 305. Christie, P. J., Alfenito, M. R., and Walbot, V. (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194: 541-549. Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y. and Liu, J. (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5: 3162-3172. D'Auria, J. C., Chen, F., and Pichersky, E. (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130: 466-476. D'Auria, J. C. (2006) Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9: 331-340. Dixon, R. A., and Paiva, N. L. (1995) Stress-induced phenylpropanoid metabolism. Plant cell 7: 1085. Engelhardt, U. H., Finger, A., and Kuhr, S. (1993) Determination of flavone C-glycosides in tea. Z. Lebensm. Unters. Forsch. 197: 239-244. Eudes, A., Pereira, J. H., Yogiswara, S., Wang, G., Teixeira Benites, V., Baidoo, E. E., Lee, T. S., Adams, P. D., Keasling, J. D., Loqué, D. (2016) Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase to reduce lignin. Plant Cell Physiol. 57: 568-579. Finkelstein, R. R., and Rock, C. D. (2002) Abscisic acid biosynthesis and response. Arabidopsis Book 1: e0058. Fujiwara, H., Tanaka, Y., Fukui, Y., Nakao, M., Ashikari, T., and Kusumi, T. (1997) Anthocyanin 5‐aromatic acyltransferase from Gentiana triflora. FEBS J. 249: 45-51. Gallego‐Giraldo, L., Jikumaru, Y., Kamiya, Y., Tang, Y., and Dixon, R.A. (2011) Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol. 190: 627-639. Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., and Chen, F. (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ. 54: 374-381. Hoffmann, L., Maury, S., Martz, F., Geoffroy, P., and Legrand, M. (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 278: 95-103. Hoffmann, L., Besseau, S., Geoffroy, P., Ritzenthaler, C., Meyer, D., Lapierre, C., Pollet, B., and Legrand, M. (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferase affects phenylpropanoid biosynthesis. Plant Cell 16: 1446-1465. Hsieh, S. K., Lo, Y. H., Wu, C. C., Chung, T. Y., and Tzen, J. T. (2015) Identification of biosynthetic intermediates of teaghrelins and teaghrelin-like compounds in oolong teas, and their molecular docking to the ghrelin receptor. J. Food Drug Anal. 23: 660-670. Hua, M. D. S., Kumar, R. S., Shyur, L. F., Cheng, Y. -B., Tian, Z., Oelmüller, R., and Yeh, K. -W. (2017) Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci. Rep. 7: 9291. Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J. K. (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9: 1935-1949. Jeszka-Skowron, M., Krawczyk, M., and Zgoła-Grześkowiak, A. (2015) Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. J. Food Compos. Anal. 40: 70-77. Jiang, X., Liu, Y., Li, W., Zhao, L., Meng, F., Wang, Y., Tan, H., Yang, H., Wei, C., and Wan, X. (2013) Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8: e62315. Kaffarnik, F., Heller, W., Hertkorn, N., and Sandermann, H. (2005) Flavonol 3‐O‐glycoside hydroxycinnamoyltransferases from Scots pine (Pinus sylvestris L.). FEBS J. 272: 1415-1424. Le Gall, G., Metzdorff, S. B., Pedersen, J., Bennett, R. N., and Colquhoun, I. J. (2005) Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene. Metabolomics 1: 181-198. Leyva, A., Jarillo, J. A., Salinas, J., and Martinez-Zapater, J. M. (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol. 108: 39-46. Li, X., Bonawitz, N. D., Weng, J. K. and Chapple, C. (2010) The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell 22: 1620-1632. Lin, L. Z., Chen, P., and Harnly, J. M. (2008) New phenolic components and chromatographic profiles of green and fermented teas. J. Agric. Food Chem. 56: 8130-8140. Lo, Y. H., Chen, Y. J., Chang, C. I., Lin, Y. W., Chen, C. Y., Lee, M. R., Lee, S.Y., and Tzen, T. C. (2014) Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor. J. Agric. Food Chem. 62: 5085-5091. Meyer, K., Shirley, A. M., Cusumano, J. C., Bell-Lelong, D. A., and Chapple, C. (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc. Natl. Acad. Sci. 95: 6619-6623. Moglia, A., Lanteri, S., Comino, C., Hill, L., Knevitt, D., Cagliero, C., Rubiolo, P., Bornemann, S., and Martin, C. (2014) Dual catalytic activity of hydroxycinnamoyl-Coenzyme A quinate transferase from tomato allows it to moonlight in the synthesis of both mono-and dicaffeoylquinic acids. Plant Physiol. 166: 1777-1787. Pang, Y., Abeysinghe, I. S. B., He, J., He, X., Huhman, D., Mewan, K. M., Sumner, L. W., Yun, J., and Dixon, R. A. (2013) Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol. 161: 1103-1116. Park, J. S., Kim, J. B., Hahn, B. S., Kim, K. H., Ha, S. H., Kim, J. B., Kim, Y. H. (2004) EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci. 166: 953-961. Reichelt, M., Brown, P. D., Schneider, B., Oldham, N. J., Stauber, E., Tokuhisa, J., Kliebenstein, D. J., Mitchell-Olds, T., and Gershenzon, J. (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59: 663-671. Rivas-San Vicente, M. and Plasencia, J. (2011) Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62: 3321-3338. Rivero, R. M., Ruiz, J. M., Garcıa, P. C., Lopez-Lefebre, L. R., Sánchez, E., and Romero, L. (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 315-321. Sønderby, I. E., Geu-Flores, F., and Halkier, B. A.. (2010) Biosynthesis of glucosinolates- gene discovery and beyond. Trends Plant Sci. 15: 283-290. Saylor, M. H., and Mansell, R. L. (1977) Hydroxycinnamoyl: coenzyme A transferase involved in the biosynthesis of kaempferol-3-(p-coumaroyl triglucoside) in Pisum sativum. Z. Naturforsch. C32: 765-768. Scharbert, S., Holzmann, N., and Hofmann, T. (2004) Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 52: 3498-3508. Seo, S., Sano, H., and Ohashi, Y. (1997) Jasmonic acid in wound signal transduction pathways. Physiol. Plant 101: 740-745. Shi, R., Sun, Y. H., Li, Q., Heber, S., Sederoff, R., and Chiang, V. L. (2009) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol. 51: 144-163. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410-417. Song, W., Zhu, X. F., Ding, X. D., Yang, H. -B., Qin, S. T., Chen, H., and Wei, S. D. (2017) Structural features, antioxidant and tyrosinase inhibitory activities of proanthocyanidins in leaves of two tea cultivars. Int J. Food Prop. 20: 1348-1358. Sonnante, G., D'Amore, R., Blanco, E., Pierri, C. L., De Palma, M., Luo, J., Tucci, M., and Martin, C. (2010) Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol. 153: 1224-1238. St-Pierre, B. and De Luca, V. (2000) Origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv. Phytochem. 34: 285-315. Sullivan, M. (2009) A novel red clover hydroxycinnamoyl transferase has enzymatic activities consistent with a role in phaselic acid biosynthesis. Plant Physiol. 150: 1866-1879. Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J. I., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D. B., and Kitayama, M. (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over‐expressing an MYB transcription factor. Plant J. 42: 218-235. Tuominen, L. K., Johnson, V. E. and Tsai, C. J. (2011) Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues. BMC genomics 12: 236. Upchurch, R.G. (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 30: 967-977. Varbanova, M., Porter, K., Lu, F., Ralph, J., Hammerschmidt, R., Jones, A. D., and Day, B. (2011) Molecular and biochemical basis for stress-induced accumulation of free and bound p-coumaraldehyde in cucumber. Plant Physiol. 157: 1056-1066. von Roepenack-Lahaye, E., Degenkolb, T., Zerjeski, M., Franz, M., Roth, U., Wessjohann, L., Schmidt, J., Scheel, D., and Clemens, S. (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol. 134: 548-559. Wang, G. F., He, Y., Strauch, R., Olukolu, B. A., Nielsen, D., Li, X., and Balint-Kurti, P. J. (2015) Maize homologs of hydroxycinnamoyl transferase, a key enzyme in lignin biosynthesis, bind the nucleotide binding leucine-rich repeat Rp1 proteins to modulate the defense response. Plant Physiol. 169: 2230-2243. Wasternack, C., Stenzel, I., Hause, B., Hause, G., Kutter, C., Maucher, H., Neumerkel, J., Feussner, I., and Miersch, O. (2006) The wound response in tomato- role of jasmonic acid. J. Plant Physiol. 163: 297-306. Xia, Y., Nikolau, B. J., and Schnable, P. S. (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell 8: 1291-1304. Yabuya, T., Yamaguchi, M. -A., Fukui, Y., Katoh, K., Imayama, T., and Ino, I. (2001) Characterization of anthocyanin p-coumaroyltransferase in flowers of Iris ensata. Plant Sci. 160: 499-503. Zabala, G., Zou, J., Tuteja, J., Gonzalez, D. O., Clough, S. J., and Vodkin, L. O. (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol. 6: 26.
摘要: 茶 (Camellia sinensis L.)含有大量的二次代謝產物,並由眾多酵素參與其生合成及調控。其中,羥基肉桂醯轉移酶 (hydroxycinnamoyl transferase, HCT)參與在多酚類 (polyphenols)與黃酮類 (flavonoids)生合成路徑,可催化羥基肉桂醯輔酶A (hydroxyconnamoyl coenzyme A)轉移至奎寧酸 (quinate)、黃酮醇配醣體 (flavanol glycoside)或花青素類 (anthocyanins)等受質,形成綠原酸 (chlorogenic acid)或醯化黃酮醇配醣體等產物。本實驗室由青心烏龍茶樹中選殖出CsHCT基因,並分析其蛋白功能及特性。CsHCT之cDNA全長為1311鹼基對,可編碼436個胺基酸序列。將茶樹CsHCT與阿拉伯芥、楊樹、紅麻及咖啡等物種之HCT蛋白進行胺基酸序列比對分析,發現CsHCT與上述物種胺基酸序列具高度保守性。利用即時定量聚合酶連鎖反應分析CsHCT於茶樹及茶苗各組織中之表現量,結果顯示CsHCT於二者之莖部組織具較高表現量。偵測不同海拔及季節之茶樹CsHCT轉錄量,得知其於高海拔及低溫環境之相對表現量較高。由非生物逆境試驗中發現CsHCT轉錄子在低溫、乾旱及高鹽處理下會被誘導表現,離層酸處理下較對照組有較高之表現量,推測CsHCT可能參與在非生物性逆境及離層酸訊息傳遞途徑中。將CsHCT過量表現於阿拉伯芥中,以LC-MS/MS分析其與野生型植株代謝產物差異,結果顯示CsHCT-OE轉殖株參與在苯丙烷類 (phenylpropanoids)、硫代葡萄醣苷類 (glucosinolates)及黃酮類等生合成路徑,其產物如4-香豆醯輔酶A (4-coumaroyl CoA)及4-羥基丁基硫代葡萄糖苷 (4-hydroxybutyl glucosinolate)及茉莉酸 (jasmonate)等含量較野生型高,而參與在脂肪酸生合成路徑之產物如月桂酸 (laurate)及亞麻酸 (linolenate)之含量則較野生型低。未來可進一步利用轉殖株進行不同逆境試驗,以深入了解CsHCT於植體內所扮演之功能及角色。
Tea (Camellia sinensis L.) contains abundance of the secondary metabolites that regulated by various enzymes. The hydroxycinnamoyl transferase (HCT) plays a catalytic role in acyl group transferring of the hydroxycinnamoyl CoA to acceptor substrates such as quinate, flavonol glycosides and anthocyanins for the reaction. The reaction was products as chlorogenic acid or acylated flavonol glycosides. We have cloned CsHCT gene from Chin-shin oolong tea plant. The full length cDNA of CsHCT is 1311 bp, encoding a protein of 436 amino acids. CsHCT is highly conserved with other HCTs from arabidopsis, poplar, kenaf and coffee by aligning amino acid sequences. The qRT-PCR analysis result has shown that CsHCT is mainly expressed in stem tissues of tea plants and seedlings. The CsHCT transcript level is relative higher in high altitudes and cooler condition. The expression level of CsHCT is induced after cold, drought and high salt treatment. Furthermore, expression level of CsHCT transcripts is also induced by abscisic acid (ABA) treatment. To provide evidence on the biological role of CsHCT, the constitutive overexpression lines of CsHCT is generated in arabidopsis. The LC-MS/MS based metabolite profiling revealed the contents of 4-coumaroyl CoA, 4-hydroxybutyl glucosinolate, and jasmonate are higher in CsHCT-OE plants, whereas the contents of laurate and linolenate are decreased in transgenic plants, indicating overexpression of CsHCT may affect the metabolic pathway such as phenylpropanoid, glucosinolate and fatty acid biosynthesis. The role of CsHCT in plants in response to different stresses need further researches.
URI: http://hdl.handle.net/11455/97768
文章公開時間: 2021-08-20
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.