Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97774
標題: 阿拉伯芥中 FYF 可能的複合體研究與AGL6 的功能性分析
Characterization of FYF protein complexes and functional analysis of AGL6 in Arabidopsis
作者: 曹晉瑋
Chin-Wei Tsao
關鍵字: AGL6
AGL6
引用: Aalen, R. B., Wildhagen, M., Stø, I. M., & Butenko, M. A. (2013). IDA: a peptide ligand regulating cell separation processes in Arabidopsis. Journal of Experimental Botany, 64, 5253-5261. Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant Journal, 50, 1007-1019. Alonso, J. M., & Ecker, J. R. (2001). The ethylene pathway: a paradigm for plant hormone signaling and interaction. Sci. STKE, 2001(70), re1-re1. Arora, A. (2005). Ethylene receptors and molecular mechanism of ethylene sensitivity in plants. Current Science 89, 1348-1361. Avila-Ospina, L., Moison, M., Yoshimoto, K., & Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany, 65, 3799-3811. Berendzen, K. W., Böhmer, M., Wallmeroth, N., Peter, S., Vesić, M., Zhou, Y., ... & Harter, K. (2012). Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. Plant Methods, 8, 25. Bleecker, A. B., & Patterson, S. E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell, 9, 1169. Bracha‐Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S., & Ohad, N. (2004). Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant Journal, 40, 419-427. Chang, X., Donnelly, L., Sun, D., Rao, J., Reid, M. S., & Jiang, C. Z. (2014). A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower enescence. PLoS One, 9, e88320. Chen, M. K., Hsu, W. H., Lee, P. F., Thiruvengadam, M., Chen, H. I., & Yang, C. H.(2011). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant Journal, 68, 168-185. Chen, W. H., Li, P. F., Chen, M. K., Lee, Y. I., & Yang, C. H. (2015). FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-binding Factors (EDFs), by Activating An Ethylene-Responsive Factor (ERF), to Control Arabidopsis Floral Organ Senescence and Abscission. Plant Physiology, pp-00433. 23 de Folter, S., Immink, R. G., Kieffer, M., Pařenicová, L., Henz, S. R., Weigel, D., ... & Davies, B. (2005). Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell, 17, 1424-1433. Fernandez, D. E., Heck, G. R., Perry, S. E., Patterson, S. E., Bleecker, A. B., & Fang, S. C. (2000). The embryo MADS domain factor AGL15 acts postembryonically: inhibition of perianth senescence and abscission via constitutive expression. Plant Cell, 12, 183-197. Forster, T. (1946). Energiewanderung und fluoreszenz. Naturwissenschaften, 33, 166-175. Ghosh I, Hamilton AD, Regan L. (2000) Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122: 5658–5659. Guo, H., & Ecker, J. R. (2004). The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 7, 40-49. Hellman, L. M., & Fried, M. G. (2007). Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nature Protocols, 2, 1849. Hepworth, S. R., Zhang, Y., McKim, S., Li, X., & Haughn, G. W. (2005). BLADEON- PETIOLE–dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell, 17, 1434-1448. Hsu, H. F., Hsu, W. H., Lee, Y. I., Mao, W. T., Yang, J. Y., Li, J. Y., & Yang, C. H. (2015). Model for perianth formation in orchids. Nature Plants, 1, 15046. Hu, C. D., Chinenov, Y., & Kerppola, T. K. (2002). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Molecular Cell, 9, 789-798. Ju, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., ... & Cooper, B. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences, 109, 19486-19491. Kaufmann, K., Melzer, R., & Theißen, G. (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347, 183-198. Koyama, T. (2014). The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Frontiers in Plant Science, 5, 650. Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., ... & Guo, H. (2015). EIN2- directed translational regulation of ethylene signaling in Arabidopsis. Cell, 163, 670-683. 24 Li, Z., Peng, J., Wen, X., & Guo, H. (2013). Ethylene-insensitive3 is a senescenceassociated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell, 25, 3311-3328. Liao, W., Li, Y., Yang, Y., Wang, G., & Peng, M. (2016). Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission. BMC Genomics, 17, 538. Magliery, T. J., Wilson, C. G., Pan, W., Mishler, D., Ghosh, I., Hamilton, A. D., & Regan, L. (2005). Detecting protein− protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. Journal of the American Chemical Society, 127, 146-157. Mao, W. T., Hsu, H. F., Hsu, W. H., Li, J. Y., Lee, Y. I., & Yang, C. H. (2015). The Cterminal sequence and PI motif of the orchid (Oncidium Gower Ramsey) PISTILLATA (PI) ortholog determine its ability to bind AP3 orthologs and enter the nucleus to regulate downstream genes controlling petal and stamen formation. Plant and Cell Physiology, 56, 2079-2099. McKim, S. M., Stenvik, G. E., Butenko, M. A., Kristiansen, W., Cho, S. K., Hepworth, S. R., ... & Haughn, G. W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development, 135, 1537-1546. Nakano, T., Fujisawa, M., Shima, Y., & Ito, Y. (2014). The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany, 65, 3111-3119. Norberg, M., Holmlund, M., & Nilsson, O. (2005). The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development, 132, 2203-2213. Ohashi, K., Kiuchi, T., Shoji, K., Sampei, K., & Mizuno, K. (2012). Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques, 52, 45-50. Patterson, S. E., & Bleecker, A. B. (2004). Ethylene-dependent and-independent processes associated with floral organ abscission in Arabidopsis. Plant Physiology, 134, 194-203. Purugganan, M. D., Rounsley, S. D., Schmidt, R. J., & Yanofsky, M. F. (1995). Molecular evolution of flower development: diversification of the plant MADSbox regulatory gene family. Genetics, 140, 345-356. 25 Ruelens, P., Zhang, Z., Van Mourik, H., Maere, S., Kaufmann, K., & Geuten, K. (2017). The origin of floral organ identity quartets. Plant Cell, 229-242. Schenk, P. M., Kazan, K., Rusu, A. G., Manners, J. M., & Maclean, D. J. (2005). The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiology and Biochemistry, 43, 997-1005. Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. Plant Cell, 2, 755-767. Theißen, G. (2001). Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology, 4, 75-85. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Münster, T., ... & Saedler, H. (2000). A short history of MADS-box genes in plants. In Plant Molecular Evolution (pp. 115-149). Springer, Dordrecht. Theißen, G., Melzer, R., & Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development, 143, 3259-3271. Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., ... & Harter, K. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. The Plant Journal, 40, 428-438. Wang, K. L. C., Yoshida, H., Lurin, C., & Ecker, J. R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 428(6986), 945. Xie, Q., Hu, Z., Zhu, Z., Dong, T., Zhao, Z., Cui, B., & Chen, G. (2014). Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Scientific Reports, 4, 4367. Xing, S., Wallmeroth, N., Berendzen, K. W., & Grefen, C. (2016). Techniques for the analysis of protein-protein interactions in vivo. Plant Physiology, 171, 727-758. Xu, A., Zhang, W., & Wen, C. K. (2014). ENHANCING ctr1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLERESPONSE1- mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biology, 14, 48. Yasumura, Y., Pierik, R., Kelly, S., Sakuta, M., Voesenek, L. A., & Harberd, N. P. (2015). An ancestral role for CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) proteins in both ethylene and abscisic acid signaling. Plant Physiology, 283-298. Yoo, S. K., Hong, S. M., Lee, J. S., & Ahn, J. H. (2011). A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control. Molecules and Cells, 31, 281-287. 26 Zahn, L. M., Kong, H., Leebens-Mack, J. H., Kim, S., Soltis, P. S., Landherr, L. L., ... & Ma, H. (2005). The evolution of the SEPALLATA subfamily of MADSbox genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 169, 2209-2223. Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., & Guo, H. (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proceedings of the National Academy of Sciences, 21431- 21436.
摘要: FYF 為一個MADS-BOX 蛋白可以藉由促進FUF1 抑制EDF1-4、BOP1/2、 IDA 基因延緩花朵的老化和脫落。為了知道哪些蛋白參與了FYF 所形成的蛋白 四聚體以調控花朵的老化和凋落,利用酵母菌雙雜交系統的篩選找出和FYF 具 有交互作用的候選蛋白。其中發現AGL6 是一可與FYF 進行交互作用的候選蛋 白。為進一步探討AGL6 與花朵的老化和凋落之關係,將35S::AGL6 及 35::AGL6+SRDX 轉殖入阿拉伯芥,並分析轉殖植株之性狀。結果發現在兩種轉 基因阿拉伯芥中都有早開花的情況,此外35S::AGL6+SRDX 可以藉由抑制 EDF1/2、IDA、BOP1 產生延緩花朵老化凋落的性狀。為了進一步證實酵母菌雙 雜交系統篩選結果的真實性的利用螢光共振能量轉移實驗來確認此項結果,發現 AGL6 可以幫助FYF 進入細胞核,並且兩者間FRET 效率有55%。FRET 的效率 和蛋白之間的距離是成反比的,FRET 效率越高表示兩蛋白之間距離越近。在FYF 與候選基因AGL15 的交互作用中發現,FYF 可與AGL15 和AGL6 穩定形成四 聚體,AGL71 為另外一個FYF 的候選交互作用蛋白,AGL71 也可以與AGL15 和兩份AGL6 形成穩定四聚體。上述之結果顯示AGL71 能夠取代FYF 與AGL6 和AGL15 交互作用形成四聚體。總結來說,當AGL6 扮演著一個抑制子的角色 時和FYF 一樣可以延緩花朵老化脫落。未來將更加了解MADS-Box 蛋白間的交 互作用關係,藉以建立MADS-Box 蛋白調控花朵老化脫落的模型。
FOREVER YOUNG FLOWER (FYF), a MADS-Box gene can delay flower senescence and abscission by up-regulating FYF UP-REGULATING FACTOR 1 (FUF1) and repressing ETHYLENE RESPONSE FACTOR1-4 (EDF1-4), BLADE ON PETIOLE 1/2 (BOP1/2) and INFLORESCENCE DEFICIENT IN ABSCISSION (IDA). To explore proteins formed tetramer protein complex with FYF in regulating flower senescence/abscission, yeast-two-hybrid screen was performed. AGAMOUS-LIKE 6 (AGL6), one of the potential FYF interacting proteins was identified. To further analyze the function of AGL6 in regulating flower senescence and abscission, 35S::AGL6, 35::AGL6+SRDX transgenic Arabidopsis were generated. Early flowering was observed in these two different types of transgenic Arabidopsis. In addition, 35S::AGL6+SRDX could delay flower senescence/abscission by repressing EDF1/2, IDA, BOP1 in transgenic Arabidopsis. The further confirm the interaction between FYF and AGL6, fluorescence resonance energy transfer (FRET) was used. The result indicated that AGL6 is able to help FYF to transport into the nucleus and the FRET efficiency between FYF and AGL6 is about 55%. It is well known that FRET efficiency and proteins distance are inversely proportional. The higher FRET efficiency indicates the shorter distance between two proteins. AGL15, the other candidate interaction protein which could form a protein tetramer with FYF and AGL6. AGL71 also could form a tetramer with AGL15 and AGL6. The result indicated that AGL71 could replace FYF to form a tetramer with AGL15 and AGL6. In the future, how MADS-box protein to form tetramer protein complex in regulating flower senescence and abscission will be further analyzed.
URI: http://hdl.handle.net/11455/97774
文章公開時間: 2018-08-30
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.