Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97795
標題: 溫室內噴霧降溫設計基準之建置與飽差利用之控制器研發
Establish the design standard of fog cooling system in greenhouse and the development of its controller by water vapor deficit
作者: 張承諺
Cheng-Yan Zhang
關鍵字: 番茄
飽差
噴霧降溫
控制策略
VETH
物聯網
Raspberry Pi
Arduino
tomatoes
water vapor deficit
control strategies
ventilation–evapotranspiration–temperature–humidity (VETH)
internet of things
Raspberry Pi
Arduino
引用: 1. 王鼎盛。1988。設施園藝設計手冊。台北:台灣大學農業工程學系農業設施研究室。 2. 王郁丰。2016。Arduino應用於魚菜共生流路控制系統之開發研究。碩士論文。台中:國立中興大學生物產業機電工程學系研究所 3. 尤建琳。2002。噴霧冷卻法配合擾流風扇於開放式溫室降溫之研究。國立中興大學農業機械工程學研究所碩士論文。 4. 仇立偉。1995。鴨舍自動化飼養管理與環境控制之研究。碩士論文。台北:國立台灣大學農業機械工程學系研究所 5. 申雍。2005。氣候物理特性與作物生育。出至'設施園藝學',106-132。台中:行政院農業委員會農業試驗所。 6. 李聲謙。2012。脈寬調變噴霧降溫控制模式之建立與分析。博士論文。台中:國立中興大學生物產業機電工程學系研究所。 7. 李宜軒。2015。芒果溫室栽培設施與環控系統之開發。碩士論文。台中:國立中興大學生物產業機電工程學系研究所。 8. 邱志強。2000。開放型溫室內鼓風式噴霧降溫系統之研究。碩士論文。台中:國立中興大學農業機械工程學系研究所。 9. 周沅曉。1997 。噴霧冷卻法應用於溫室降溫之研究。碩士論文。台中:國立中興大學農業機械工程學系研究所。 10. 高信豪。2000。熱環境模式應用於水簾式畜舍環控管理系統之研究。碩士論文。台中:中興大學農業機械工程學研究所。 11. 洪國欽。2005。紅外線雞體溫度感測系統之研究。碩士論文。台中:國立中興大學生霧產業機電工程學系研究所。 12. 張義忠。1997。畜禽舍細霧降溫系統之動態模擬。碩士論文。台北:國立台灣大學農業機械工程學研究所。 13. 張金元。2005。噴霧程序變異控制降溫系統應用於開放式溫室內熱環境改善之研究。碩士論文。台中:國立中興大學農業機械工程學系研究所。 14. 黃郁升。2005。溫室火鶴花蒸發散之研究。碩士論文。台中:國立中興大學生物產業機電工程學系研究所。 15. 蔡奉廷。2003。不同土壤地溫、水分與熱流變化之研究。碩士論文。屏東:國立屏東科技大學水土保持工程學研究所。 16. 王鼎盛。1993。台灣地區溫室內溫濕度之預測模式(II)。農業工程學報 39(1)。53-70。 17. 方煒。1995。溫室蒸發冷卻系統降溫效果量化指標之建立。農業機械學刊 4(2)。15-25。 18. 林正亮、朱健松、黃裕益。1997。噴霧降溫系統於開放式雞舍內的蒸發比例之分析。嘉義技術學院學報 55:11-26。 19. 黃裕益。2000。鼓風式噴霧法於開放型溫室降溫之研究。農業機械學刊9(4)。17-30。 20. 黃裕益。2001。自然通風溫室之微氣候調節。載於林達德、李桂芝,設施栽培自動化專輯:33-40。國立台灣大學生物產業機電工程學系 出版。 21. 黃裕益。1999。噴霧冷卻法應用於台灣地區塑膠布溫室內降溫之研究。農業機械期刊 8(4)。17-28。 22. 陳思如、李國譚、葉德銘。2012。鈣的吸收、運移及分配對番茄果實尻腐病之影響。高雄區農業改良場研究彙報。第23卷第2期。10-15 23. Abdel-Ghany, A.M., E. Goto and T. Kozai. 2006. Evaporation characteristics in a naturally ventilated, fog-cooled greenhouse. Renewable Energy 31: 2207-2226. 24. Adams, P. and L.C. Ho. 1993. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil 154:127-132 25. ASHRAE. 1993. Handbook of Fundamentals. ASHRAE, INC. New York. 26. ASAE D271.2 DEC94. Psychrometric Data. Agricultural Engineering Yearbook ASAE, St. Joseph, MI. 49085. 1999. 27. Albright, L.D. 1990. Environemt Control for Animals and Plants. St.Joseph. MI:ASAE. 28. Babtista, F.J., B.J. Bailey, J.M. Randall, and J.F. Meneses. 1999. Greenhouse ventilation rate: theory and measurement with tracer gas techniques. J. Agric. Eng. Res. 72(1): 363-374 29. Bottcher, R. W., I.B. Singletary and G.R. Baughman. 1993. Humidity effects on efficiency of misting nozzles. In 'Livestock Environment IV', ed. E. Collins and C. Boon, P. 375-383. Fourth International Symposium on Livestock Environment. St. Joseph, MI, USA:ASAE. 30. Chandra, P., L.D. Albright and N.R. Scott. 1981. A time dependent analysis of greenhouse thermal environment. Transactions of the ASAE 24:442-449. 31. Chen, C., T. Shen and Y. Weng. 2011. Simple model to study the effect of temperature on the greenhouse with shanding nets. African Journal of Biotechnology 10 (25): 5001-5014. 32. Carlos Ulloa, José María Nuñez, Andrés Suárez, Chengxian Lin. 2017. Design and development of a PV-T test bench based on Arduino. ELSEVIER ScienceDirect : Energy Procedia. Volume141. P.71-75 33. Chiraz Chaffei Haouari, Afef Hajjaji Nasraoui, Donia Bouthour, Maaroufi Dghimi Houda, Chiraz Ben Daieb, Jamel Mnai and Houda Gouia. 2012. Response of tomato (Solanum lycopersicon) to cadmium toxicity: Growth, element uptake, chlorophyll content and photosynthesis rate. Academic Journals. African Journal of Plant Science. Vol. 6(1) :P. 1-7 34. De Freitas, S.T., C.Z. Jiang, and E.J. Mitcham. 2012. Mechanisms Involved in Calcium Deficiency Development in Tomato Fruit in Response to Gibberellins. J. Plant Growth Regulat. 31:221-234 35. David R. Bowling, Nate G. McDowell, Barbara J. Bond, Beverly E. Law, James R. Ehleringer. 2002. 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia2002(131):113-124 36. Frankel, H. 1986. Pesticide Application: Technique and Efficiency. In 'Advisory work in crop pest and disease management', ed. J. Palti and R. Ausher,P.132-160. New York: Spring-Verlay. 37. Gianluca Barbon, Michael Margolis, Filippo Palumbo, Franco Raimondi, Nick Weldin. 2016. Taking Arduino to the Internet of Things: The ASIP programming model. ELSEVIER ScienceDirect : Computer Communications. Volume89-90. P.128-140 38. Hayashi Makio, Fukuda Yuuki, Kubota Chieri, Yokoi Shingo. 2005. Visual VETH users manual. CTL DSpace Repository. 39. Holbert, K. E. 2007. SOLAR CALCULATION. 1-5. 40. Jessica J. Prenger, Peter P. Ling. 2011.  Understanding and Using Vapor Pressure Deficit. THE OHIO STATE University. AEX-804. 41. Jonathan W.P. Kuziek, Axita Shienh, Kyle E.Mathewson. 2017. Transitioning EEG experiments away from the laboratory using a Raspberry Pi 2. ELSEVIER ScienceDirect : Journal of Neuroscience Methods. Volume277. P.75-82 42. Kumar, K.S., K.N. Tiwari and M.K. Jha. 2009. Design and technology for greenhouse cooling in tropical and subtropical regions: a review. Energy Bulid. 41: 1269-1275. 43. Kamp,P.G.H.,and,G.J.Timmerma. 1996. Computerized Environmental control in greenhouse. IPC-Plant. Netherlands. 44. Kindelan, M. 1980. Dynamic modeling of greenhouse emvironment. Transactions of the ASAE 23:1232-1239. 45. Kohei Koyama, shuhei Takemoto. 2014. Morning reduction of photosynthetic capacity before midday depression. SCIENTIFIC REPORTS. volume 4, Article number: 4389. 46. Mathala J. Gupta, Pitam Chandra. 2002. Effect of greenhouse design paramenters on conservation of energy for greenhouse environmental control. Energy 27:777-794。 47. OMAFRA. 2001. Growing Greenhouse Vegetables. Publication 371S. Ontario Ministry of Agriculture , Food and Rural Affairs, Toronto, Canada, 8 pp. 48. Perdiagones, A., J. M. Garcia, A. Romero, A. Rodriguez, L. Luna, C. Raposo and S. de la Plaza. 2008. Cooling strategies for greenhouses in summer: Control of fogging by pulse width modulation. Biosystems Engineering 99: 573-586. 49. Reist,P.C. 1993. Aerosol Science and Technolog. New York. McGraw-Hill. Inc. 50. Sheikh Ferdoush, Xinrong Li. 2014. Wireless Sensor Network System Design using Raspberry Pi and Arduino for Environmental Monitoring Applications. ELSEVIER ScienceDirect : Procedia Computer Science. Volume34. P.103-110 51. Takakura, T., K. A. Jordan and L. L. Boyd. 1971. Daynamic simulation of plant growth and environment in the greenhouse. Transactions of the ASAE 964-971. 52. Trigui, M., S. Barrington and L. Gauthier. 2001. A strategy for greenhouse climate control, Part I: Model development. J. agric. Engng. Res. 78(4):407-413. 53. Teitel, M. and J. Tanny. 1999. Nature ventilation of greenhouse: experiments and model. Agriculture and Forest Meteorology 96:59-70. 54. Takashi Nobuoka, Masayuki Oda, Hidekazu Sasaki. 1997. Effects of Wind and Vapor Pressure Deficit on Transpiration of Tomato Scions. P.105-112. Journal of the Japanese Society for Horticultural Science. 55. Vladimir Vujović, Mirjana Maksimović. 2015. Raspberry Pi as a Sensor Web node for home automation. ELSEVIER ScienceDirect : Computers & Electrical Engineering. Volume 44. P.153-171 56. Venkat Subramanian Arumuga Perumal, Krishnamoorthy Baskaran, Suleman KhalidRaia. 2017. IMPLEMENTATION OF EFFECTIVE AND LOW-COST BUILDING MONITORING SYSTEM(BMS) USING RASPBERRY PI. ELSEVIER ScienceDirect : Energy Procedia. Volume143. P.179-185 57. 三原義秋。1980。 温室設計の基礎と実際。160-166。東京:養賢堂。 58. 木村玲二。2001。赤外線放射温度計による地表面温度と熱収支モデル計算による地表面温度の比較。天気48(6):371-382。 59. 片岡圭子。2003。シクラメン栽培利用への利用效果。18-21。東京:施設と園藝123號。 60. 中川行夫。1967。農業構造物の環境調節に関する研究(1)パッド・アンド・ファン式による夏のガラス室の冷房。農業気象22(4):143-148。 61. 田中俊六、武田仁、足立哲夫、土屋橋雄。2004。最新建築環境工學。六合出版社。 62. 近藤純正。1994。水環境の気象学―地表面の水収支・熱収支―。東京:朝倉書店。 63. 伊藤代次郎, 長谷場徹也。1984。水稻葉溫蒸散に及ばす短波放射と風速の影響。農業氣象 41(1):21-28。 64. 岡田益己。1980。暖房, 温室設計の基礎と実際(三原義秋編著),養賢堂,182-204. 65. 古在豐樹。2012。人工光型植物工場世界に広がる日本の農業革命。初版。143-167。東京:株式会社オ一ム。 66. 浅野洋介,渡邊孝一,嘉数 (大野) 祐子,栗本育三郎。 2013。植物工場における細霧発生による水蒸気飽差制御 システムの構築。木更津工業高等専門学校。 67. 比烏根真一.川滿芳信.村山盛一。1998。葉面飽差の違いがサトウキビの光合成特性に及ぼす影響。1-7。琉球大學農學部學術報告。 68. 石原邦, 黒田栄喜。1986。水稲葉身の光合成速度に対する空気湿度の影響.。日作紀 55 : 458-464. 69. 斉藤邦行, 石原邦。1987。水稲葉身の光合成速度におよぼす飽差の影響。日作紀 56:163-170. 70. 服部重昭, 玉井幸治, 阿部敏夫。 1993。 ヒノキ林における土壌水分と飽差が蒸発散に及ぼす影響。日林誌75: 216-224 71. 福井幸昌。2005。暑熱対策を今のうちからはじめよう。中央畜産会生産技術セミナーNO.112。網頁: http://cali.lin.go.jp/cali /manage/ 112/s-semina/112ss2.ht。 72. 栞田孝, 小竹利明, 竹内真一, Maximov, TrofimC., 吉 川。2002。 東シベリア北方林域におけるLarix gmelinii林の水分動態と土壌水分,飽差との関係。 日林誌 84:"246-254 73. ルーラル電子図書館-現代農業用語集-飽差。2011。2011年11月號刊。P.164-167。網址:http://lib.ruralnet.or.jp/genno/yougo/gy087.html。上網日期:2017-11-14
摘要: 目前台灣地區設施內的噴霧量設計,業者普遍依賴經驗,導致噴霧水量常有供不應求、或是供過於求的情況發生。本研究目的係建置一高壓噴霧系統之設計基準,根據106年環境資料設計夏季外氣條件、無遮陰設施,利用熱平衡建立VETH圖設計噴霧水量,估算一分地約8(L/min)的噴霧水量,設施內溫度可降至室外溫3~4℃以下。   本研究以物聯網為架構搭配Raspberry Pi 與Arduino單晶片,建置一套價格低廉、自由度高,及穩定性佳的飽差控制器,使用者能遠端監視溫室狀態、控制環控設備啟閉,查詢歷史紀錄及對參數功能進行調整。   本研究於南投埔里之溫室設施,建置噴霧降溫系統,針對不同室內循環扇、噴霧降溫控制策略進行試驗,探討不同策略(溫度、濕度、飽差、交互作用)組合的執行狀況,實驗結果顯示良好的策略組合能改善傳統控制策略的缺點,將設施內溫度降至室外溫度2~4℃以下,並提升室內循環扇之控制準確性。   利用飽差控制器進行夏季玉女小番茄的栽培,試驗飽差控制環境與未控制環境對番茄作物的影響,結果顯示飽差控制環境下,作物的氣孔開度及光合作用皆優於未控制環境,得知飽差控制可同時達到冷卻、調整蒸散量,及促進光合成作用的效果。
Conventionally, the amount of fogging for greenhouses in Taiwan is calculated mainly based on the experience of vendors, thus often leading to excessive demand or supply of water in greenhouses. The purpose of this study was to establish a design standard for high-pressure fog systems. A non-shaded greenhouse was designed based on the summer weather conditions, which were derived from the environmental data in 2017. Additionally, this study employed the heat balance method to construct a ventilation–evapotranspiration–temperature–humidity (VETH) chart, which was then used to calculate the required amount of fogging in the greenhouse. The results revealed that the required amount of fogging per Fen (a unit of area in Taiwan, with an equivalent to 969.917 m2) was approximately 8(L/min), which reduced the temperature in the greenhouse by 3–4℃.   This study constructed a water vapor deficit controller underpinned by internet of things, using the Raspberry Pi and Arduino single-chip microcontroller. This controller exhibits low cost, high flexibility, as well as high stability and also enables users to monitor greenhouses, control environmental-control equipment, browse history records, and adjust parameters and functions, all of which can be accomplished remotely.   This study constructed a fog cooling system in a greenhouse in Puli, Nantou, tested different control strategies using ventilation fan and fog cooling system in various greenhouses, and explored the effectiveness of different strategies (i.e., using temperature, humidity, water vapor deficit, and combinations among them as the control factor). The experimental results revealed that the favorable strategy combinations alleviated the weakness of conventional control strategies, reducing the temperature by 2–4 °C and increasing the preciseness of ventilation fan control.   This study grew cherry tomatoes in summer using a water vapor controller and examined the effects of control strategies on the growth of cherry tomatoes, compared with that in the uncontrolled environment. The results revealed that the plants exhibit more favorable stomatal conductance and photosynthesis rate under the water vapor deficit-controlled environment than that under the uncontrolled environment. Therefore, the water vapor deficit control facilitates cooling, adjusts transpiration volume, and enhances photosynthetic activities. Keywords: tomatoes, water vapor deficit, control strategies, ventilation–evapotranspiration–temperature–humidity (VETH), internet of things, Raspberry Pi, Arduino
URI: http://hdl.handle.net/11455/97795
文章公開時間: 10000-01-01
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.