Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97796
標題: 用於3D列印之壓阻複合材料研究與開發
Study and Development of 3D Printed Piezoresistive Polymer Composites
作者: 陳郁諺
Yu-Yen Chen
關鍵字: 3D列印
壓阻複合高分子
碳黑
壓阻應變係數
3D printer
piezoresistive polymer composites
carbon black
piezoresistive gauge factor
引用: [1] X. J. Wang, D. D. L. Chung, 'Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar,' Sensors and Actuators A, vol. 71, pp. 208-212, 1998. [2] M. Lillemose , L. Gammelgaard, J. Richter, E.V. Thomsen and A. Boisen ,'Epoxy based photoresist/carbon nanoparticle composites,' Composites Science and Technology, vol. 68, pp. 1831-1836, 2008. [3] J.F. Zhou, Y.H. Song, Q. Zheng, Q. Wu and M.Q. Zhang, 'Percolation transition and hydrostatic piezoresistance for carbon black filled poly(methylvinylsilioxane) vulcanizates,' Carbon, vol. 46, pp. 679-691, 2008. [4] J. H. Kang, C. Park, J. A. Scholl, A. H. Brazin, N. M. Holloway, J. W. High, S. E. Lowther and J. S. Harrison, 'Piezoresistive characteristics of single wall carbon nanotube/polyimide nanocomposites,' Journal of Polymer Science: Part B: Polymer Physics, vol. 47, pp. 994-1003, 2009. [5] A. I. Oliva-Aviles, F. Aviles and V. Sosa, 'Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field,' Carbon, vol. 49, pp. 2989-2997, 2011. [6] V. Eswaraiah, K. Balasubramaniamb and S. Ramaprabhu, 'One-pot synthesis of conducting graphene–polymer composites and their strain sensing application,' Nanoscale, vol. 4, pp. 1258-1262, 2012. [7] S. Cravanzola, G. Haznedar, D. Scarano, A. Zecchina and F. Cesano, 'Carbon-based piezoresistive polymer composites: Structure and electrical properties,' Carbon, vol. 62, pp. 270 – 277, 2013. [8] L. K. Siong, I. A. Azid, O. Sidek, K. Ibrahim, M. Devarajan, 'SU-8 piezoresistive microcantilever with high gauge factor,' Micro & Nano Letters, vol. 8, pp. 123-126, 2013. [9] S. J. Patil, A. Adhikari, M. S. Baghini and V. R. Raoa, 'An ultra-sensitive piezoresistive polymer nano-compositemicrocantilever platform for humidity and soil moisture detection,' Sensors and Actuators B, vol. 203, pp. 165-173, 2014. [10] E. Roh, B.-U. Hwang, D. Kim, B.-Y. Kim, and N.-E. Lee, 'Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers,' Acsnano, vol. 9, pp. 6252–6261, 2015. [11] A. Sanli, C. Müller, O. Kanoun, C. Elibol and M. F.-X. Wagner, 'Piezoresistive characterization of multi-walled carbon nanotube-epoxy based flexible strain sensitive films by impedance spectroscopy,' Composites Science and Technology, vol. 122, pp. 18-26, 2016. [12] H. Souri, J. Yu, H. Jeon, J. W. Kim, C.-M. Yang, N.-H. You and B.J. Yang, 'A theoretical study on the piezoresistive response of carbon nanotubes embedded in polymer nanocomposites in an elastic region,' Carbon, vol. 120, pp.427-437, 2017. [13] X. Wang, S. Meng, M. Tebyetekerwa, Y. Li, J. Pionteck, B. Sun, Z. Qin and M. Zhu, ' Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber,' Composites: Part A, vol. 105, pp. 291-299, 2018. [14] S. B. Kesner and R. D. Howe, 'Design Principles for Rapid Prototyping Forces Sensors Using 3-D Printing,' IEEE/ ASME Transactions on Mechtrinics, vol. 16, pp. 866-870, 2011. [15] S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson and D. A. Hutchins, 'A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors,' PLOS one, vol. 7, pp. 1-6, 2012. [16] J. T. Muth , D. M. Vogt , R. L. Truby , Y. Mengüç , D. B. Kolesky , R. J. Wood , and J. A. Lewis, 'Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers,' Adv. Mater., vol. 26, pp. 6307-6312, 2014. [17] V. Saggiomo and A. H. Velders, 'Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices,' Adv. Sci., vol. 2, 2015. [18] Z. C. Kennedy, J. F. Christ, K. A. Evans, B. W. Arey, L. E. Sweet, M. G. Warner, R. L. Eriksonb and C. A. Barrett, '3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform,' Nanoscale, vol. 9, pp. 5458–5466, 2017. [19] M. T. Rahman, R. Moser, H. M. Zbib,C. V. Ramana and R. Panat, '3D printed high performance strain sensors for high temperature applications,' Journal of Applied Physics, vol. 123, 024501, 2018. [20] X. Yu, J. Thaysen,O. Hansen and A. Boisen, 'Optimization of sensitivity and noise in piezoresistive cantilevers,' Journal of Applied Physics, vol. 92, pp. 6296-6301, 2002. [21] S.-J. Park, M. B. Goodman and B. L. Pruitt, 'Analysis of nematode mechanics by piezoresistive displacement clamp,' Proceedings of National Academy of Science U.S.A., vol. 104, pp. 17376-17381, 2007. [22] B. Komati, J. Agnus, C. Clévy and P. Lutz, 'Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications,' Journal of Micromechanics and Microengineering, vol. 24, pp. 035018, 2014. [23] C.-H. Cho, R. C. Jaeger, J. C. Suhling, Y. Kang and A. Mian, 'Characterization of the temperature dependenceof the pressure coefficients of n- and p-type silicon using hydrostatic testing,' IEEE Sensors Journal, vol. 8, pp. 392-400, 2008. [24] X. Zhang, R. Rajoo, C. S. Selvanayagam, A. Kumar, V. S. Rao, N. Khan, V. Kripesh, J. H. Lau, D.-L. Kwong, V. Sundaram and R. R. Tummala, 'Application of Piezoresistive stress sensor in wafer bumping and drop impact test of embedded ultrathin device,' IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, pp. 935-943, 2012. [25] S. Bhardwaj, M. Sheplak and T. Nishida, 'S/N optimization and noise considerations for piezoresistive microphones,' Proc 16th Int. Conf. Noise Phys. Syst. 1/f Fluctuations, pp. 549-552, 2001. [26] K. I. Lee, H. Takao, K. Sawada and M. Ishida, 'Low temperature dependence three-axis accelerometer for high temperature environments with temperature control of SOI piezoresistors,' Sensors and Actuators A, vol. 104, pp. 53-60, 2003. [27] J. Lee, C. M. Spadaccini, E. V. Mukerjee and W. P. King, 'Differential scanning calorimeter based on suspended membrane single crystal silicon microhotplate,' Journal of Microelectromechanical Systems, vol. 17, pp. 1513-1525, 2008. [28] A. Loui, F. T. Goericke, T. V. Ratto, J. Lee, B. R. Hart and W. P. King, 'The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing,' Sensors and Actuators A, vol. 147, pp. 516-521, 2008. [29] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, 'Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,' Acta Materialia, vol. 56, pp. 2929-2936, 2008. [30] W. S. Bao, S. A. Meguid, Z. H. Zhu, and G. J. Weng, 'Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites,' Journal of Applied Physics, vol. 111, 093726, 2012. [31] X. W. Zhang, Y. Pan, Q. Zheng and X. S. Yi, 'Time dependence of piezoresistance for the conductor-filled polymer composites,' Journal of Polymer Science Part B: Polymer Physics, vol. 38, pp. 2739-2749, 2000. [32] X. W. Zhang, Y. Pan, Q. Zheng and X. S. Yi, 'Piezoresistance of conductor filled insulator composites,' Polym Int, vol. 50, pp. 229-236, 2001. [33] L. H. Wang, X. T. Wang, and Y. L. Li, 'Relation between repeated uniaxial compressive pressure and electrical resistance of carbon nanotube filled silicone rubber composite,' Composites Part A: Applied Science and Manufacturing, vol. 43, pp. 268-274, 2012. [34] H. Meeuw, C. Viets, W.V. Liebig, K. Schulte and B. Fiedler, 'Morphological influence of carbon nanofillers on the piezoresistive response of carbon nanoparticle/epoxy composites under mechanical load,' European Polymer Journal, vol. 85, pp. 198-210, 2016. [35] J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A.H. Windle, 'Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties,' Polymer, vol. 40, pp.5967-5971, 1999. [36] F. Panozzo, M. Zappalorto and M. Quaresimin, 'Analytical model for the prediction of the piezoresistive behavior of CNT modified polymers,' Composites Part B, vol. 109, pp. 53-63, 2017. [37] Y. Yan, V. Sencadas, J. Zhang, G. Zu, D. Wei and Z. Jiang, 'Processing, characterisation and electromechanical behaviour of elastomeric multiwall carbon nanotubes-poly (glycerol sebacate) nanocomposites for piezoresistive sensors applications,' Composites Science and Technology, vol. 142, pp. 163-170, 2017. [38] L. M. Chiacchiarelli, M. Rallini, M. Monti, D. Puglia, J. M. Kenny and L. Torre, 'The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring,' Composite s Science and Technology, vol. 80, pp. 73-79, 2013. [39] 古訪賢。2001。微粒粉末在高分子連續相之分散研究。碩士論文,國立台北科技大學有機高分子研究所,臺北、臺灣。 [40] 黃山峰。2000。花青綠色顏料與碳黑之分散液及電著材料製備研究。碩士論文,國立中興大學化學工程學系暨研究所,臺中、臺灣。 [41] 王仕漢。2008。多壁奈米碳管/導電型碳黑應用於複合型導電高分子之電性研究。碩士論文,國立交通大學半導體材料與製程產業碩士專班,新竹、臺灣。 [42] C. Decker,' Photoinitiated Crosslinking Polymerisation,' Prog. Polym. Sci., vol. 21, pp. 593-650, 1996. [43] 劉佩青。2010。感光性樹脂在高透明聚亞醯胺基材上之接著強度及其性質研究。碩士論文,國立台北科技大學有機高分子研究所,臺北、臺灣。 [44] 周洺偉。2007。陽離子型紫外光硬化樹脂之研究。碩士論文,國立台北科技大學化學工程研究所,臺北、臺灣。 [45] 王沛雯。2010。紫外光硬化丙烯酸脂之研究。碩士論文,私立東海大學化學工程研究所,臺中、臺灣。 [46] 黃郁迪。2014。紫外光硬化聚氨酯壓克力樹脂之合成與性質之研究。碩士論文,國立台北科技大學化學工程研究所,臺北、臺灣。 [47] B. C. Gross, J. L. Erkal, S. Lockwood, C. Chen, and D. M. Spence, 'Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences,' Anal. Chem., vol. 86, pp. 3240−3253, 2014. [48] D. W. Johnson, B. P. Dobson and K. S. Coleman, 'A manufacturing perspective on graphene dispersions,' Current Opinion in Colloid & Interface Science, vol. 20, pp. 367-382, 2015. [49] A. O'Neill, U. Khan, P. N. Nirmalraj, J. Boland and J. N Coleman, 'Graphene Dispersion and Exfoliation in Low Boiling Point Solvents,' J. Phys. Chem. C, vol. 115, pp. 5422–5428, 2011. [50] J. N. Lee, C. Park and G. M. Whitesides, 'Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,' Analytical Chemistry, vol. 75, pp. 6544-6554, 2003.
摘要: 隨著3D列印技術的發展,其應用的領域也越來越廣泛。本研究以發展光固化型的壓阻材料做為3D列印應用為目標,將導電碳材料碳黑加入於光固化樹脂中,透過超音波均質的方式將碳黑均勻的分散在光固化樹脂當中,並透過調整碳黑與光固化樹脂兩者的比例,來使得調製出的光固化複合高分子樹脂不僅具有導電性並且也有壓阻特性,而成為壓阻複合高分子,之後使用光固化型式的數位光處理 (Digital Light Processing, DLP) 3D列印技術來進行印製出壓阻感測材料。實驗部分,本研究比較使用兩種溶劑N-甲基吡咯烷酮(N-methyl-2-pyrrolidone, NMP )及異丙醇(isopropanol, IPA)於導電光固化樹脂製作中的分散碳黑的效果及製作出來的試片其電性及壓阻特性。而評估其壓阻特性方式為架設一拉伸試驗機構來進行實驗,之後計算出不同碳黑濃度的壓阻複合高分子的壓阻應變係數來評估其材料的壓阻特性。 實驗結果,以NMP及IPA分別為分散碳黑用溶劑的導電光固化樹脂的導電的關鍵濃度分別為1.0-1.5 wt%之間及0.5-1.0 wt%之間。壓阻感測極限應變量,以IPA製作出來的壓阻複合高分子感測極限應變量最多可達7%而NMP的為4%;而壓阻應變係數(Gauge factor)的計算結果,最佳結果以IPA為分散溶劑製作的碳黑濃度為1.0 wt%的壓阻複合高分子為5.2,而隨著濃度增加,壓阻複合高分子的壓阻應變係數會愈低,代表材料之感測敏感度愈不佳。DLP 3D列印之結果目前可以初步的固化成型。本研究希望未來此研究可以應用於感測器原件開發及製作上面作為使用。達到減化製程步驟、縮短製作時間並且降低成本的一種新穎感測元件製作方式。
With the 3D printing technique development, there are more and more different applications and research fields employed 3D printing technique. The purpose of this study is to develop a piezoresistive composite polymer material that can be applied on photocurable Digital light processing (DLP) 3D printing to fabricate. The conductive particles material, carbon black (CB), was added into the photocuarble resin to make the conductive photocuable resin. The different amount of the conductive CB was employed for obtaining the conductive percolation threshold and the piezoresistivity of the polymer composites. In order to disperse the CB uniformly, the carbon black dispersion was dispersed in two kinds of solvents, N-methyl-2-pyrrolidone (NMP) and isopropanol (IPA), by the ultrasonic homogenizer. Then the CB dispersion was mixed with photocuarble resin to obtain the conductive photocuable resin. The CB dispersing situation, the conductivity and piezoresistivity of conductive photocuable resin were measured and discussed in this work. A tensile measurement equipment was set up for measuring the piezoresistivity of the fabricated piezoresistive sample. The conductive percolation threshold of the composite polymer was 1.0-1.5 wt% and 0.5-1.0 wt% for the polymer composites fabricated by NMP and IPA solvents, respectively. The maximum sensing limit strain was obtained 7% and 4% for the polymer composites fabricated with IPA and NMP, respectively. The highest gauge factor result was the 1.0 wt% concentration polymer composites fabricated with IPA is 5.2. As the concentration increases, the gauge factor of the piezoresistive polymer composites will be lower, indicating the sensing sensitivity of the material is poor. The fabrication results of DLP 3D printing for the fabricated photocuable resin can be cured and formed any designed patterns. This study can be applied to the development and production of sensor in the future for achieving the reduction process step, shortening production time, and cut cost those benefits.
URI: http://hdl.handle.net/11455/97796
文章公開時間: 2021-03-06
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.