Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97847
標題: 寬能隙氧化鎵基薄膜成長與其在深紫外光偵測器之應用
Growth of Wide-Bandgap Gallium-Oxide Based Thin Films and Their Applications for Deep- Ultraviolet Photodetectors
作者: 黃筱媛
Shiau-Yuan Huang
關鍵字: 氧化鎵鋅
磁控濺鍍法
深紫外光偵測器
退火處理
ZnGa2O4
RF sputtering
thermal annealing
deep-ultraviolet photodetector
引用: [1]李正中,'薄膜光學與鍍膜技術',藝軒圖書出版社,pp. 447-451,2012年。 [2]A. Rogalski, and M. Razeghi, 'Semiconductor ultraviolet photodetector,' Opto- Electr. Rev., vol. 4, pp. 13-30, 1996. [3]H. Chen, K. Liu, and L. Hu, 'New concept ultraviolet photodetectors,' Materialstoday., vol. 18, issue. 9, pp. 493-5-2, Nov. 2015. [4]I. Cantarell, and I. Almodovar, 'Prediction, acceleration and correction of fatique effects in photomultiplier tubes,' Int. J. Radiation Isotopes, vol. 16, no. 2, pp. 91-95, Feb. 1965. [5]A.R. Franklin, W.W. Holloway, and D.H. Mcmahon, 'Photomultiplier tube cooling device,' Rev. Sci. Instrum., vol. 36, no. 2, pp. 232, Sep. 1965. [6]G. Chodil, D. Hearn, and R.C. Jopson, 'Background events in photomultiplier tubes at high altitudes,' Rev. Sci. Instrum, vol. 36, no. 3, pp. 394-395, Oct. 1965. [7]R. Suzuki, S. Nakagomi, and Y. Kokubun, 'Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,' Appl. Phys. Lett., vol. 98, no. 13, pp. 131114-1-131114-3, 2011. [8]Z. Huang, W. Weng, S. Chang, C. Chiu, S. Wu and T. Hsueh, 'Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector,' IEEE Sens. J., vol. 13, no. 9, pp. 3462-3467, 2013. [9]T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, 'Vertical solar-blind deep-ultraviolet schottky photodetectors based on β-Ga2O3 substrates,' Appl. Phys. Express., vol. 1, no. 1, pp. 011202-1-011202-3, 2008. [10]M. Razeghi, 'Short-wavelength solar-blind detectors-status, prospects, and markets,' Proc. IEEE, vol. 90, no. 6, pp. 1006-1014, 2002. [11]X. Du, Z. Mei, Z. Liu, Y. Guo, T. Zhang, Y. Hou, Z. Zhang, Q. Xue, and A. Y. Kuznetsov, 'Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,' Adv. Mater., vol. 21, no. 45, pp.4625-4630, 2009. [12]W.Y. Weng, T.J. Hsueh, S.J. Chang, G.J. Huang, and H.T. Hsueh, 'A beta-Ga2O3/GaN schottky-barrier photodetector,' IEEE Photon. Technol. Lett., vol. 23, no. 7, pp.444-446, 2011. [13]M. Vasile, C. Ianasi, A. –V. Birdeanu, E. Vasile, 'Structural properties of undoped and doped with Er3+ ions ZnGa2O4 nanomaterials obtained by hydrothermal method', Journal of Optoelectronic and Advanced Materials, vol. 13, no. 10, pp. 1273-1278 (2011) [14]T. Minami, T. Maeno, Y. Kuroi, S. Takata, 'High-Luminance Green-Emitting Thin-Film Electroluminescent Devices Using ZnGa2O4:Mn Phosphor,' Jpn. J. Appl. Phys., vol. 34, part. 2, pp. L684-L687, 1995. [15]M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, 'Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures,' Thin Solid Films, vol. 411, no. 1, pp. 134-139, 2002. [16]C.I. Baban, Y. Toyoda, and M. Ogita, J, 'High temperature oxygen sensor using a Pt–Ga2O3–Pt sandwich structure,' Jpn. J. Appl. Phys., vol. 43, no. 10, pp. 7213-7216, 2004. [17]M.Y. Tsai, O. Bierwagen, M.E. White, and J.S. Speck, 'β-Ga2O3 growth by plasma-assisted molecular beam epitaxy,' J. Vac. Sci. Technol. A, vol. 28, pp. 354-359, 2010. [18]H.W. Kim, N.H. Kim, 'Annealing effects on the properties of Ga2O3 thin films grown on sapphire by the metal organic chemical vapor deposition,' Appl. Surf. Sci., vol. 230, pp. 301-306, 2004. [19]V. Gottschalch, K. Mergenthaler, G. Wagner, J. Bauer, H. Paetzelt, C. Sturm, and U. Teschner, 'Growth of β-Ga2O3 on Al2O3 and GaAs using metal‐organic vapor‐phase epitaxy,' Phys. Stat. Sol. A, vol. 206, pp. 243-249, 2009. [20]T. Minami, T. Miyata, and Y. Sakagami, 'TFEL devices using oxide thin films without vacuum process,' Surf. Coat. Technol, vol. 108, pp. 594-598, 1998. [21]R. Huang, H. Hayashi, F. Oba, and I. Tanaka, 'Microstructure of Mn-doped γ-Ga2O3 epitaxial film on sapphire (0001) with room temperature ferromagnetism,' J. Appl. Phys., vol. 101, p. 063526, 2007. [22]K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, and H. Hosono, 'Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3,' Appl. Phys. Lett., vol. 88, p. 092106, 2006. [23]S.L. Ou, D.S. Wuu, Y.C. Fu, S.P Liu, R.H Horng, L. Liu, and Z.C. Feng, 'Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,' Mater. Chem. Phys., vol.133, pp. 700-705, 2012. [24]E.G. Víllora, K. Shimamura, T. Ujiie, and K. Aoki, 'Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature,' Appl. Phys. Lett., vol. 92, no. 20, pp. 202118-1-202118-3, 2008. [25]X.Z. Liu, P. Guo, T. Sheng, L.X. Qian, W.L. Zhang, and Y.R. Li, 'β-Ga2O3 thin films on sapphire pre-seeded by homo-self-templated buffer layer for solar-blind UV photodetector,' Opt. Mater., vol. 51, pp. 203-207, 2016. [26]B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, 'Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,' NANO Latt., vol. 15, no. 6, pp. 3988-3993, 2015. [27]S. Oh, Y. Jung, M.A. Mastro, J.K. Hite, C.R. Eddy Jr., and J. Kim, 'Development of solar-blind photodetectors based on Si-implanted β-Ga2O3 ,' Opt. Express, vol. 23, no. 22, pp. 28300-28305, Nov. 2015. [28]X.C. Guo, N.H. Hao, D.Y. Guo, Z.P. Wu, Y.H. An, X.L. Chu, L.H. Li, P.G. Li, M. Lei, and W.H. Tang, 'β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,' J. Alloys Compounds, vol. 660, pp. 136-140, 2015. [29]H. Hayashi, R. Huang, H. Ikeno, F. Oba, S. Yoshioka, and I. Tanaka, 'Room temperature ferromagnetism in Mn-doped γ-Ga2O3 with spinel structure,' Appl. Phys. Lett., vol. 89, no. 18, pp. 181903-1- 181903-3, 2006. [30]P. Wellenius, A. Suresh, and J.F. Muth, 'Bright, low voltage europium doped gallium oxide thin film electroluminescent devices,' Appl. Phys. Lett., vol. 92, no. 2, pp. 021111-1- 021111-3, 2008. [31]A. L. Jaromin, and D. D. Edwards, 'Subsolidus phase relationships in the Ga2O3-Al2O3-TiO2 system,' J. Am. Ceram. Soc., vol. 88, no. 9, pp. 2573-2577, 2005. [32]A. R. Phani, S. Santucci, S. Di Nardo, L. Lozzi, M. Passacantando, P. Picozzi, 'Preparation and characterization of bulk ZnGa2O4', Journal of Materials Science, vol. 33, pp. 3969-3973 (1998). [33]M. Vasile, C. Ianasi, A. V. Birdeanu, E. Vasile, 'Structural properties of undoped and doped with Er3+ ions ZnGa2O4 nanomaterials obtained by hydrothermal method', Journal of Optoelectronic and Advanced Materials, vol. 13, no. 10, pp. 1273-1278 (2011). [34]B. Qiao, Z. L. Tang, Z. T. Zhang, L. Chen, 'Study on ZnGa2O4:Cr3+ a.c. powder electroluminescent device', Materials Letters, vol. 61, pp. 401-404 (2007). [35]S. M. Chung, S. H. Hanb, Y. J. Kimb, 'Characterization of compositional variation and luminescence of ZnGa2O4 :Mn thin film phosphor' Materials Letters, vol. 59, pp. 786-789 (2005). [36]陳金嘉、黃俊達、楊奇達,'光電半導體元件',全威出版社,pp. 230-235,2005年。 [37]S.M. Sze, 'Semiconductor devices physics and technology 3rd edition', John Wiley & Sons, pp. 323-335, 2012. [38]林麗娟,'X光繞射原理及其應用',工業材料雜誌,No. 86,pp. 100-109,1994年。 [39]高至鈞、鮑忠興,'奈米材料之檢測分析技術與應用',工業材料雜誌, No. 153,pp. 106-109,1999年。 [40]林昆霖,'肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡',No. 2,pp. 34-38,2013年。 [41]歐陽毅,'稀磁性摻鈷氧化鋅薄膜之特性研究與應用',國立中興大學材料與工程研究所碩士論文,pp. 28-29,2016年10月。 [42]翁明壽、許智明,'高性能鍍膜雷射脈衝電弧鍍膜技術',工業材料雜誌,No. 182,pp. 81-91,2002年。 [43]P. Delichere, 'Surface Science Spectra', AVS: Science & Technology of Materials, Interfaces, and Processing.', vol. 24, Oct. 2001 [44]T. Yamashita and P. Hayes, 'Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials.', Applied surface science, vol. 254, pp. 2441-2449, Feb. 2008 [45]J. Liua, W. Lub, H. Wua, L. Jina, B. Hua, L. Lia, Zhenling Wanga, 'In situ synthesis of rice-like ZnGa2O4 for the photocatalytic removal of organic and inorganic pollutants' Materials Science in Semiconductor Processing, vol. 56, pp. 251-259 (2016). [46]S. H. Yuan, C. C. Wang, S.Y. Huang, and D. S. Wuu, 'Improved Responsivity Drop From 250 to 200 nm in Sputtered Gallium Oxide Photodetectors by Incorporating Trace Aluminum' IEEE Electron Device Letters, vol. 39, Feb. 2018.
摘要: 本論文利用射頻磁控濺鍍法將氧化鎵與氧化鎵鋅薄膜沉積於藍寶石基板上,因為此氧化物半導體有相當寬的能隙,可以被應用在深紫外光偵測器元件。本研究將氧化鎵與氧化鎵鋅薄膜製作成金屬-半導體-金屬結構的光偵測器元件。我們以氧化鎵薄膜爲對照組,藉由改變基板溫度、成長氣氛(氬氣、氧氣)、退火溫度及退火氣氛等條件,將氧化鎵鋅薄膜與元件特性最佳化。 本研究首先探討基板溫度對薄膜性質與元件特性的影響,基板溫度從室溫逐漸改變至600 °C,並在純氬氣氛圍製備氧化鎵鋅薄膜。X光繞射分析得知,當基板溫度高於400 °C時,氧化鎵鋅薄膜才會出現結晶相。接著將薄膜製作成光偵測器,當元件使用基板溫度400 °C成長的氧化鎵鋅薄膜製作時,在照射光波長240 nm與偏壓5V量測條件下,其最大光響應度值可達0.7 A/W。結果推測與純氬氣製程可能產生氧空缺有關。 本論文接著探討成長過程中調變氬氣與氧氣比例對於氧化鎵鋅薄膜的影響。結果發現,當製程中通入氧氣時,薄膜結晶性明顯變差;且這些薄膜製作成光偵測器的光電流明顯降低,使得元件響應度變差。 上述結果可知利用基板溫度400 ℃及純氬氣氛圍下成長的氧化鎵鋅薄膜製備成光偵測器時,具有最好的元件特性。為了進一步改善元件特性,將最佳成長條件的氧化鎵鋅薄膜進行退火處理。結果發現在適當的退火溫度處理後,氧化鎵鋅薄膜結晶特性可提升。在光偵測器的部分,退火溫度為700 ℃與大氣氛圍下退火處理的的氧化鎵鋅元件,有較大的光電流( 2.02×10-7A )與較低的暗電流( 5.35×10-12A ),其最大光響應度值為2.53 A/W(在照射光波長240 nm與偏壓5V量測條件下)。 在退火氣氛調變的實驗中,發現氧化鎵鋅薄膜在真空下退火會使薄膜的氧空缺增加,可提升元件的光電流,但也造成暗電流變大;在純氧氣氛圍下退火,則會使薄膜內氧空缺減少,因此暗電流降低,同時使得光電流降低,並導致響應度下降。在大氣下退火可修補薄膜內氧空缺,因此元件有最佳的光暗電流比與最佳的響應度,比起對照組之氧化鎵薄膜感測器,其頻譜峰值可藍移至240 nm,且響應度更高。
In this thesis, ZnGa2O4 thin films were prepared on c-plane sapphire substrates by RF sputtering. Due to its wide bandgap, ZnGa2O4 films can be used for fabricating the metal-semiconductor-metal (MSM) deep ultraviolet photodetectors (DUVPDs). The sputtered Ga2O3 films were used as the reference samples for comparison. By adjusting the process parameters such as substrate temperature, gas atmosphere for growth, annealed temperature and annealed atmosphere, the characteristics of ZnGa2O4 films and optoelectronic performances of DUVPDs can be optimized. Firstly, ZnGa2O4 thin films were deposited in Ar atmosphere at various substrate temperatures (RT to 600 °C). Based on the x-ray diffraction (XRD) results, when the substrate temperature was higher than 400 °C, the crystal structure of ZnGa2O4 film was transformed from amorphous to crystalline. These ZnGa2O4 films deposited at various substrate temperatures were then used as the active layers to fabricate the PDs. Among these devices, the PD prepared with the 400 °C-grown ZnGa2O4 film possessed better optoelectronic performances. At a bias voltage of 5 V and 240-nm irradiation, this PD possessed a larger photocurrent of 5.69×10-8 A, a smaller dark current of 5.77×10-12 A, and a higher responsivity of 0.7 A/W. More oxygen vacancies may be generated in the film when the pure argon atmosphere was used during the growth process. Subsequently, the oxygen gas was properly introduced in the growth process, and the effect of argon/oxygen ratio on the film's properties was investigated. XRD analysis shows that the crystallinity of the film is lowered by introducing the oxygen gas. Additionally, after adding the oxygen gas in the growth process, the PDs with these films have both lower photocurrents and photoresponses in comparison to those with the film grown in pure argon atmosphere. Based on the above results, the substrate temperature of 400 °C and the pure argon atmosphere are the optimum growth conditions for fabricating the ZnGa2O4 PD. To further improve the device characteristics, the thermal annealing treatment was performed on the as-deposited ZnGa2O4 film. After thermal annealing at suitable temperatures in air atmosphere, the film's crystallinity can be improved. After fabricating the PD with the 700 C-annealed film, the device performances are enhanced, which has a photocurrent of 2.02×10-7A, a dark current of 5.35×10-12A, and a responsivity of 2.53 A/W (@5 V and 240 nm). Finally, via the adjustment of annealing atmosphere, it can be found that the device performance is mainly affected by the oxygen atmosphere. When the film was annealed in vacuum, the content of oxygen vacancy was increased, leading to both increments in the photocurrent and dark current of fabricated PD. Moreover, as the pure oxygen atmosphere was used in the annealing process, the content of oxygen vacancy of the film was reduced, which resulted in an effective decrease in the dark current of fabricated PD. However, the photocurrent and responsivity of this device both reduced. When the annealing process was performed in air atmosphere, the fabricated PD had the optimum optoelectronic performances including the photo/dark current ratio and responsivity. Moreover, the spectral response peak showed a blue shift to 240 nm and higher responsivity data as compared with those of the Ga2O3 photo detectors.
URI: http://hdl.handle.net/11455/97847
文章公開時間: 2021-08-28
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.