Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97878
標題: Sn-Sb-S固態量子點敏化太陽能電池
Sn-Sb-S solid-state quantum dot-sensitized solar cells
作者: 林御恩
Yu-En Lin
關鍵字: 固態量子點敏化太陽能電池
錫銻硫
solid-state quantum dot-sensitized solar cells
Sn-Sb-S
引用: [1] M .Grätzel. Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C : Photochemistry Reviews, 4, 145-153 (2003) [2] I. Hod, V.G. Pedro, Z. Tachan, F. F. Santiago, I. M. Sero, J. Bisquert, A. Zaban. Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process, The Journal of Physical Chemistry Letter, 2, 3032-3035 (2011). [3] Harrys Samosir, 國立中興大學物理系碩士論文 (2017). [4] Y. Fadhli, A. Rabhi, M. Kanzari. Optical Constant and Electrical Resistivity of Annealed Sn3Sb2S6 Thin Films, Acta Metall. Sin. (Engl. Lett.), 29(3), 287-294 (2016). [5] M.A.Khan1, Azhar Ahmed, N.Ali, Tariq Iqbal, Ayaz Arif Khan, Mahboob Ullah, Muhammad Shafique. Improved Optical Properties of Tin Antimony Sulphide Thin Films for Photovoltaics, Science and education publishing, 4(1), 1-6 (2016). [6] Nisar Ali, S.T. Hussain, Yaqoob Khan, Nisar Ahmad, M.A. Iqbal, Syed Mustansar Abbas. Effect of air annealing on the band gap and optical properties of SnSb2S4 thin films for solar cell application, Materials Letters, 100, 148-151 (2013). [7] A. Jebali, N. Khemiri, F. Aousgi, M. Ben Rabeh, M. Kanzari. Structural, morphological and optical properties of the sulfosalt material SnSb4S7 thin films,Elsevier, 27, 1057–1064 (2014). [8] I. Gaied, A. Gassoumi, M. Kanzari and N. Yacoubi. Investigation of optical properties of the sulfosalt new absorber Sn2Sb2S5 thin films using Photothermal Deflection Spectroscopy, 214, 012127 (2010). [9] Sb2S3圖:http://www.hummingbirdminerals.com/Tucson15_169dfxzzz.jpg, from website: https://www.pinterest.com/pin/550424385697598599 (Pinterest). [10] Matthieu Y. Versavel, Joel A. Haber. Structural and optical properties of amorphous and crystalline antimony sulfide thin-films, Thin Solid Films, 515, 7171-7176 (2007). [11] Sarah Messina, M.T.S. Nair, P.K. Nair. Antimony sulfide thin films in chemically deposited thin film photovoltaic cells, Thin Solid Films, 515, 5777-5782 (2007). [12] V. Stevanović, K. Hartman, R. Jaramillo, S. Ramanathan, T. Buonassisi, and P. Graf. Variations of ionization potential and electron affinity as a function of surface orientation : The case of orthorhombic SnS, Appl. Phys. Lett. 104, 211603 (2014). [13] Yu Kumagai, Lee A. Burton, Aron Walsh, and Fumiyasu Oba. Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn2S3, and SnS2, PHYSICAL REVIEW APPLIED 6, 014009 (2016). [14] Biswajit Ghosh, Madhumita Das, Pushan Banerjee, Subrata Das. Fabrication and optical properties of SnS thin films by SILAR method, Elsevier, Applied Surface Science, 254, 6436–6440(2008). [15] U. Diebold. The surface science of Titanium dioxide, Surface Science Reports, 48, 53-229 (2003). [16] Nurul Syafiqah Mohamed Mustakim, Charles Ahamefula Ubani, Suhaila Sepeai, Norasikin Ahmad Ludin, Mohd Asri Mat Teridi, Mohd Adib Ibrahim. Quantum dots processed by SILAR for solar cell applications, Elsevier, 163, 256–270 (2018). [17] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong. Near Infrared Absorption of CdSexTe1–x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. American Chemical Society Nano ,6, 5215-5222 (2013). [18] S.H. Im, C.S. Lim, J. A. Chang, Y.H. Lee, N. Maiti, H.J. Kim, Md. K. Nazeeruddin, M. Grätzel, S.I. Seok. Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells, American Chemical Society Nano Letters , 11, 4789 (2011). [19] PhaseBushra Ismail, Saima Mushtaq, Rafaqat Ali Khan, Asad Muhammad Khan, Aurang Zeb, Abdur Rahman Khan. Enhanced grain growth and improved optical properties of the Sndoped thin films of Sb2S3orthorhombic phase, Elsevier, 125, 6418–6421 (2014). [20] F. Aousgi and M. Kanzari. Study of the Optical Properties of Sn-doped Sb2S3 Thin Films, Elsevier, Energy Procedia, 10, 313 – 322(2011) [21] B.ISMAIL, S.MUSHTAQ, A.KHAN. Enhanced Grain Growth In The Sn Doped Sb2S3 Thin Film Absorber Materials For Solar Cell Applications [22] Bushra Ismail, Saima Mushtaq, Rafaqat Ali Khan, Asad Muhammad Khana,Aurang Zeb, Abdur Rahman Khana. Enhanced grain growth and improved optical properties of the Sndoped thin films of Sb2S3 Orthorhombic, Elsevier, Optik, 125, 6418–6421(2014). [23] 陳佳靜, 國立中興大學物理所碩士論文(2008). [24] P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals, The Journal of Physical Chemistry letters, 107, 14336-14341 (2003). [25] M. Stolka , J.F. Yanus, and D.M. Pai, 'Hole Transport in Solld Solutions of a Diamine in Polycarbonate,' The Journal of Physical Chemistry, 88, 4707-4714 (1984). [26] Y. Gao, E. Talgorn,M. Aerts,M. T. Trinh,J. M. Schins,A. J. Houtepen,and L. D. A. Siebbeles. Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids, Nano Letters, 11, 5471-5476 (2011). [27] 李明威, 物理雙月刊三十七卷七期 (2015). [28] I. Hod, V.G. Pedro, Z. Tachan, F. F. Santiago, I. M. Sero, J. Bisquert, A. Zaban. Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process. The Journal of Physical Chemistry Letter, 2, 3032-3035 (2011). [29] S.M. Reimann and M. Manninen, Electronic structure of quantum dots. Reviews of Modern Physics, 74, 1283 (2002). [30] R. D. Schaller and V. I. Klimov,'High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,' Physical Review Letters, 92, 1866011 (2004). [31] Online:http://www.newport.com/Introduction-to-Solar-Radiation/411919/103 3/content.aspx [32] S.O. Kasap. Optoelectronics and Photonics: Principles and Practices. Optoelectronics (Prentice Hall) (1999). [33] R. G. Gordon,'Criteria for Choosing Transparent Conductors,' MRS BULLETIN, 25, 52-57 (2000). [34] L. Kavan and M. Gratzel,'Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis,' Electrochimica Acta, 40, 643-652 (1995). [35] H.J. Snaith, and M. Grätzel, The Role of a 'Schottky Barrier' at an Electron-Collection Electrode in Solid-State Dye-Sensitized Solar Cells. Advanced Materials, 18, 1910-1914 (2006). [36] D. Liu and T. L. Kelly,'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,' Nature Photonics, 8, 133-138 (2014). [37] W. H. Nguyen, C. D. Bailie,E. L. Unger,and M. D. McGehee, 'Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells, ' Journal of the American Chemical Society, 136, 10996-11001 (2014). [38] I. K. Ding, N. Tetreault, J. Brillet, B. E. Hardin,E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gratzel, and M. D. McGehee,'Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance, ' Advanced Functional Materials., 19, 2431-2436 (2009). [39] R. G. Gordon,'Criteria for Choosing Transparent Conductors,' MRS BULLETIN, 25, 52-57 (2000). [40] E. Rabinovich, G. Hodes. Effective Bandgap Lowering of CdS Deposited by Successive Ionic Layer Adsorption and Reaction. The Journal of Physical Chemistry C, 117, 1611-1620(2013). [41] F. Fabregat-Santiago,et al., Electron Transport and Recombination in Solid-State DyeSolar Cell with Spiro-OMeTAD as Hole Conductor. Journal of the American Chemical Society., 131, 558-562 (2008).
摘要: 此論文研究主要為固態Sn-Sb-S半導體量子點敏化太陽能電池,實驗製程主要是利用連續離子吸附反應法 (Successive Ionic Layer Adsorption and Reaction method, SILAR) 使材料Sn-Sb-S半導體量子點吸附在TiO2上再經過退火程序即可合成Sn-Sb-S量子點,最後填充電洞傳輸材料 (Spiro-OMeTAD) 以及濺鍍金電極,電池結構為TiO2 (Blocking layer) /TiO2+Sn-Sb-S/Spiro/Au,利用XRD分析發現合成材料整體結構晶相依然為Sb2S3,但可以藉由角度的偏移及晶格常數abc的變化去知道Sn2+離子的摻雜,用EDS進行分析得到的元素比例約為Sn0.36Sb0.73S1,Sn2+與Sb3+的比例約為1:2,經由UV-Vis Spectroscopy計算出來的能隙約為1.38 eV,TEM型態分析得知Sn-Sb-S QDs平均粒徑大小約為14 nm,最後以FESEM分析電池剖面結構得知其光電極整體厚度約為1.922 μm。 樣品最佳參數:溶液離子濃度Sn2+ 0.15 M、Sb3+ 0.1 M、S2- 0.1 M,SnS (9 cycle)(50 sec)/Sb2S3 (8 cycle)(20 sec),退火325 ℃、15分鐘 (氮氣中) ,進行I-V Curve量測在一個太陽光源強度下得到的光電轉換效率為0.977 %、短路電流 (Short-circuit current, Jsc) 6.10 mA/cm2、開路電壓 (Open circuit voltage, Voc) 0.43 V與填充因子 (Fill factor, FF) 35.51 %,在0.05個太陽光源強度下其效率更可以達到4.22 %。
This thesis presents the Sn-Sb-S solid-state quantum dot-sensitized solar cells. We utilize SILAR methoud to make Sn-Sb-S material adsorb on the mesoporous-TiO2, and after annealing process, we are able to synthesize Sn-Sb-S quantum dots.Futhermore, the hole transport material (Spiro-OMeTAD) fill into the mesoporous-TiO2 and from over layer above. Finally, the Au counter electroed is sputtered on over layer as the electron collector.These structure of the solar cell are TiO2 (Blocking layer) /TiO2+Sn-Sb-S/Spiro/Au. The X-ray diffraction (XRD) show that the peak of Sn-Sb-S is Sb2S3, however, we can discover the Sn-dopped by peaks shift and diversification in lattice constant. The energy dispersive spectrometer (EDS) exhibit the proportion of each element is Sn0.36Sb0.73S1.Particularly the ratio between Sn2+ and Sb3+ is probably 1:2. UV-Vis spectroscopy indicates the Sn-Sb-S QDs have an energy gap of 1.38 eV. And we can know the partical size is about 14 nm, by TEM, the cross section view display that the thickness of photoanode approximately 1.922 μm via FESEM。 In this research, the best experimental parameter:the solution concentration Sn2+ 0.15 M、Sb3+ 0.1 M、S2- 0.1 M, SILAR parameter SnS (9 cycle)(50 sec)/Sb2S3 (8 cycle)(20 sec), annealing 325 ℃、15 minutes (in nitrogen). Overall, the best Sn-Sb-S QDs-sensitized solar cells power covert efficiency (PCE) is 0.977 % under 100% AM1.5 sunlight, short-circuit current 6.10 mA/cm2、open circuit voltage 0.43 V、Fill factor 35.51 %, especially, under 5% AM1.5 sunlight, the PCE of solar cell achieve 4.22 %。
URI: http://hdl.handle.net/11455/97878
文章公開時間: 2021-08-09
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.