Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97880
標題: 利用掃描式光電流顯微術研究二銻化鉬與二硫化錫異質結構電晶體元件
Investigation of MoTe2/SnS2 Heterostructure Devices on h-BN by Scanning Photocurrent Microscopy
作者: 林聖祥
Sheng-Xiang Lin
關鍵字: 掃描式光電流顯微術
二銻化鉬
二硫化錫
異質結構
scanning photocurrent microscopy
MoTe2
SnS2
heterostructures
引用: [1] A. K.Geim, K. S.Novoselov, Nat. Mater. 2007, 6, 183. [2] A. H.Castro Neto, F.Guinea, N. M. R.Peres, K. S.Novoselov, A. K.Geim, Rev. Mod. Phys. 2009, 81, 109. [3] B.Trauzettel, D.V.Bulaev, D.Loss, G.Burkard, Nat. Phys. 2007, 3, 192. [4] S.DasSarma, S.Adam, E. H.Hwang, E.Rossi, Rev. Mod. Phys. 2011, 83, 407. [5] K. S.Kim, Y.Zhao, H.Jang, S. Y.Lee, J. M.Kim, K. S.Kim, J.-H.Ahn, P.Kim, J.-Y.Choi, B. H.Hong, Nature 2009, 457, 706. [6] Q. H.Wang, K.Kalantar-Zadeh, A.Kis, J. N.Coleman, M. S.Strano, Nat. Nanotechnol. 2012, 7, 699. [7] M.Chhowalla, H. S.Shin, G.Eda, L.-J.Li, K. P.Loh, H.Zhang, Nat. Chem. 2013, 5, 263. [8] A. K.Geim, I.V.Grigorieva, Nature 2013, 499, 419. [9] R.Ganatra, Q.Zhang, ACS Nano 2014, 8, 4074. [10] P.Rivera, J. R.Schaibley, A. M.Jones, J. S.Ross, S.Wu, G.Aivazian, P.Klement, K.Seyler, G.Clark, N. J.Ghimire, J.Yan, D. G.Mandrus, W.Yao, X.Xu, Nat. Commun. 2015, 6, 6242. [11] T.Roy, M.Tosun, M.Hettick, G. H.Ahn, C.Hu, A.Javey, Appl. Phys. Lett. 2016, 108, 083111. [12] K. F.Mak, J.Shan, Nat. Photonics 2016, 10, 216. [13] M.Koperski, K.Nogajewski, A.Arora, V.Cherkez, P.Mallet, J.-Y.Veuillen, J.Marcus, P.Kossacki, M.Potemski, Nat. Nanotechnol. 2015, 10, 503. [14] B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti, A.Kis, Nat. Nanotechnol. 2011, 6, 147. [15] K. F.Mak, C.Lee, J.Hone, J.Shan, T. F.Heinz, Phys. Rev. Lett. 2010, 105, 136805. [16] O.Lopez-Sanchez, D.Lembke, M.Kayci, A.Radenovic, A.Kis, Nat. Nanotechnol. 2013, 8, 497. [17] A.Splendiani, L.Sun, Y.Zhang, T.Li, J.Kim, C.-Y.Chim, G.Galli, F.Wang, Nano Lett. 2010, 10, 1271. [18] G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, M.Chhowalla, Nano Lett. 2011, 11, 5111. [19] S.Rathi, I.Lee, D.Lim, J.Wang, Y.Ochiai, N.Aoki, K.Watanabe, T.Taniguchi, G.-H.Lee, Y.-J.Yu, P.Kim, G.-H.Kim, Nano Lett. 2015, 15, 5017. [20] Y.Guo, J.Robertson, Appl. Phys. Lett. 2016, 108, 233104. [21] M.-H.Doan, Y.Jin, S.Adhikari, S.Lee, J.Zhao, S. C.Lim, Y. H.Lee, ACS Nano 2017, 11, 3832. [22] R.Yan, S.Fathipour, Y.Han, B.Song, S.Xiao, M.Li, N.Ma, V.Protasenko, D. A.Muller, D.Jena, H. G.Xing, Nano Lett. 2015, 15, 5791. [23] R.Cheng, F.Wang, L.Yin, K.Xu, T.Ahmed Shifa, Y.Wen, X.Zhan, J.Li, C.Jiang, Z.Wang, J.He, Appl. Phys. Lett. 2017, 110, 173507. [24] R. K.Ghosh, S.Mahapatra, IEEE J. Electron Devices Soc. 2013, 1, 175. [25] C.Gong, H.Zhang, W.Wang, L.Colombo, R. M.Wallace, K.Cho, Appl. Phys. Lett. 2013, 103, 053513. [26] J.Kang, S.Tongay, J.Zhou, J.Li, J.Wu, Appl. Phys. Lett. 2013, 102, 012111. [27] Y.Liang, S.Huang, R.Soklaski, L.Yang, Appl. Phys. Lett. 2013, 103, 042106. [28] Y.-F.Lin, Y.Xu, S.-T.Wang, S.-L.Li, M.Yamamoto, A.Aparecido-Ferreira, W.Li, H.Sun, S.Nakaharai, W.-B.Jian, K.Ueno, K.Tsukagoshi, Adv. Mater. 2014, 26, 3263. [29] S.Fathipour, N.Ma, W. S.Hwang, V.Protasenko, S.Vishwanath, H. G.Xing, H.Xu, D.Jena, J.Appenzeller, A.Seabaugh, Appl. Phys. Lett. 2014, 105, 192101. [30] D.Braga, I.Gutiérrez Lezama, H.Berger, A. F.Morpurgo, Nano Lett. 2012, 12, 5218. [31] N. R.Pradhan, D.Rhodes, S.Feng, Y.Xin, S.Memaran, B.-H.Moon, H.Terrones, M.Terrones, L.Balicas, ACS Nano 2014, 8, 5911. [32] S.Nakaharai, M.Yamamoto, K.Ueno, Y.-F.Lin, S.-L.Li, K.Tsukagoshi, ACS Nano 2015, 9, 5976. [33] Y.-M.Chang, S.-H.Yang, C.-Y.Lin, C.-H.Chen, C.-H.Lien, W.-B.Jian, K.Ueno, Y.-W.Suen, K.Tsukagoshi, Y.-F.Lin, Adv. Mater. 2018, 30, 1706995. [34] H.Li, Z.Yin, Q.He, H.Li, X.Huang, G.Lu, D. W. H.Fam, A. I. Y.Tok, Q.Zhang, H.Zhang, Small 2012, 8, 63. [35] D. S. L.Abergel, V.Apalkov, J.Berashevich, K.Ziegler, T.Chakraborty, Adv. Phys. 2010, 59, 261. [36] I. G.Lezama, A.Arora, A.Ubaldini, C.Barreteau, E.Giannini, M.Potemski, A. F.Morpurgo, Nano Lett. 2015, 15, 2336. [37] C.Ruppert, O. B.Aslan, T. F.Heinz, Nano Lett. 2014, 14, 6231. [38] D. H.Keum, S.Cho, J. H.Kim, D.-H.Choe, H.-J.Sung, M.Kan, H.Kang, J.-Y.Hwang, S. W.Kim, H.Yang, K. J.Chang, Y. H.Lee, Nat. Phys. 2015, 11, 482. [39] S.Cho, S.Kim, J. H.Kim, J.Zhao, J.Seok, D. H.Keum, J.Baik, D.-H.Choe, K. J.Chang, K.Suenaga, S. W.Kim, Y. H.Lee, H.Yang, Science 2015, 349, 625. [40] L.Yang, W.Zhang, J.Li, S.Cheng, Z.Xie, H.Chang, ACS Nano 2017, 11, 1964. [41] Y.-C.Lin, D. O.Dumcenco, Y.-S.Huang, K.Suenaga, Nat. Nanotechnol. 2014, 9, 391. [42] S.Song, D. H.Keum, S.Cho, D.Perello, Y.Kim, Y. H.Lee, Nano Lett. 2016, 16, 188. [43] C.Fan, Y.Li, F.Lu, H.-X.Deng, Z.Wei, J.Li, RSC Adv. 2016, 6, 422. [44] J.Xia, D.Zhu, L.Wang, B.Huang, X.Huang, X.-M.Meng, Adv. Funct. Mater. 2015, 25, 4255. [45] L. A.Burton, D.Colombara, R. D.Abellon, F. C.Grozema, L. M.Peter, T. J.Savenije, G.Dennler, A.Walsh, Chem. Mater. 2013, 25, 4908. [46] D.De, J.Manongdo, S.See, V.Zhang, A.Guloy, H.Peng, Nanotechnology 2013, 24, 025202. [47] Y.Huang, E.Sutter, J. T.Sadowski, M.Cotlet, O. L. A.Monti, D. A.Racke, M. R.Neupane, D.Wickramaratne, R. K.Lake, B. A.Parkinson, P.Sutter, ACS Nano 2014, 8, 10743. [48] J. M.Gonzalez, I. I.Oleynik, Phys. Rev. B 2016, 94, 125443. [49] K. T.Ramakrishna Reddy, N.Koteswara Reddy, R. W.Miles, Sol. Energy Mater. Sol. Cells 2006, 90, 3041. [50] B.Luo, Y.Fang, B.Wang, J.Zhou, H.Song, L.Zhi, Energy Environ. Sci. 2012, 5, 5226. [51] Shi, W. et al. Hydrothermal growth and gas sensing property of flower-shaped SnS 2 nanostructures. Nanotechnology 17, 2918–2924 (2006). [52] Y.Sun, H.Cheng, S.Gao, Z.Sun, Q.Liu, Q.Liu, F.Lei, T.Yao, J.He, S.Wei, Y.Xie, Angew. Chemie 2012, 124, 8857. [53] H.Zhong, G.Yang, H.Song, Q.Liao, H.Cui, P.Shen, C.-X.Wang, J. Phys. Chem. C 2012, 116, 9319. [54] M.Hiroki, K.Kumakura, H.Yamamoto, NTT Tech. Rev. 2016, 14. [55] K. S.Novoselov, A.Mishchenko, A.Carvalho, A. H.Castro Neto, Science 2016, 353, aac9439. [56] T.Roy, M.Tosun, J. S.Kang, A. B.Sachid, S. B.Desai, M.Hettick, C. C.Hu, A.Javey, ACS Nano 2014, 8, 6259. [57] T.Uwanno, Y.Hattori, T.Taniguchi, K.Watanabe, K.Nagashio, 2D Mater. 2015, 2, 041002. [58] K. K.Kim, A.Hsu, X.Jia, S. M.Kim, Y.Shi, M.Dresselhaus, T.Palacios, J.Kong, ACS Nano 2012, 6, 8583. [59] M.Massicotte, P.Schmidt, F.Vialla, K. G.Schädler, A.Reserbat-Plantey, K.Watanabe, T.Taniguchi, K. J.Tielrooij, F. H. L.Koppens, Nat. Nanotechnol. 2016, 11, 42. [60] G.-H.Lee, Y.-J.Yu, X.Cui, N.Petrone, C.-H.Lee, M. S.Choi, D.-Y.Lee, C.Lee, W. J.Yoo, K.Watanabe, T.Taniguchi, C.Nuckolls, P.Kim, J.Hone, ACS Nano 2013, 7, 7931. [61] S.Datta, B.Das, Appl. Phys. Lett. 1990, 56, 665. [62] I.Žutić, J.Fabian, S.DasSarma, Rev. Mod. Phys. 2004, 76, 323. [63] Yeonghwan Ahn, andJames Dunning, J.Park*, 2005, DOI 10.1021/NL050631X. [64] Y.Yang, J.Li, H.Wu, E.Oh, D.Yu, Nano Lett. 2012, 12, 5890. [65] Y. H. Ahn, A. W. Tsen, Bio Kim, Yung Woo Park, Jiwoong Park, Nano Lett. 2007, 7, 11. [66] M.Burghard, A.Mews, ACS Nano 2012, 6, 5752. [67] W. J.Yu, Q. A.Vu, H.Oh, H. G.Nam, H.Zhou, S.Cha, J.-Y.Kim, A.Carvalho, M.Jeong, H.Choi, A. H.Castro Neto, Y. H.Lee, X.Duan, Nat. Commun. 2016, 7, 13278. [68] D.Jariwala, S. L.Howell, K.-S.Chen, J.Kang, V. K.Sangwan, S. A.Filippone, R.Turrisi, T. J.Marks, L. J.Lauhon, M. C.Hersam, Nano Lett. 2016, 16, 497. [69] D.V.Lang, C. H.Henry, Solid. State. Electron. 1978, 21, 1519. [70] J.Park, Y. H.Ahn, C.Ruiz-Vargas, Nano Lett. 2009, 9, 1742. [71] C.-C.Wu, D.Jariwala, V. K.Sangwan, T. J.Marks, M. C.Hersam, L. J.Lauhon, J. Phys. Chem. Lett. 2013, 4, 2508. [72] Y.Yi, C.Wu, H.Liu, J.Zeng, H.He, J.Wang, Nanoscale 2015, 7, 15711. [73] H.Yamaguchi, J.-C.Blancon, R.Kappera, S.Lei, S.Najmaei, B. D.Mangum, G.Gupta, P. M.Ajayan, J.Lou, M.Chhowalla, J. J.Crochet, A. D.Mohite, ACS Nano 2015, 9, 840. [74] T.Wilson, Appl. Phys. 1980, 22, 119. [75] M. H.Hecht, Phys. Rev. B 1990, 41, 7918. [76] A.Szabo, S. J.Koester, M.Luisier, IEEE Electron Device Lett. 2015, 36, 514. [77] J.Xu, J.Jia, S.Lai, J.Ju, S.Lee, Appl. Phys. Lett. 2017, 110, 033103. [78] Y.-W.Lan, C. M.Torres, S.-H.Tsai, X.Zhu, Y.Shi, M.-Y.Li, L.-J.Li, W.-K.Yeh, K. L.Wang, Small 2016, 12, 5676. [79] 2D Semiconductors, https://www.2dsemiconductors.com [80] A.Castellanos-Gomez, M.Buscema, R.Molenaar, V.Singh, L.Janssen, H. S. J.van derZant, G. A.Steele, 2D Mater. 2014, 1, 011002. [81] M.Yamamoto, S. T.Wang, M.Ni, Y.-F.Lin, S.-L.Li, S.Aikawa, W.-B.Jian, K.Ueno, K.Wakabayashi, K.Tsukagoshi, ACS Nano 2014, 8, 3895. [82] Model TTPX Cryogenic Probe Station, https://www.lakeshore.com [83] Stanford Research Systems Inc. Model SR570 Low-Noise Current Preamplifier. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [84] Stanford Research Systems Inc. Model SR560 Low-Noise Voltage Preamplifier. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [85] Stanford Research Systems Inc. Model SR830 Lock-In Amplifier. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [86] J.-K.Kim, K.Cho, T.-Y.Kim, J.Pak, J.Jang, Y.Song, Y.Kim, B. Y.Choi, S.Chung, W.-K.Hong, T.Lee, Sci. Rep. 2016, 6, 36775. [87] H.Ji, M.-K.Joo, Y.Yun, J.-H.Park, G.Lee, B. H.Moon, H.Yi, D.Suh, S. C.Lim, ACS Appl. Mater. Interfaces 2016, 8, 19092. [88] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, Wiley, New York, 2007. [89] J.Kang, D.Jariwala, C. R.Ryder, S. A.Wells, Y.Choi, E.Hwang, J. H.Cho, T. J.Marks, M. C.Hersam, Nano Lett. 2016, 16, 2580. [90] W. J.Yu, Z.Li, H.Zhou, Y.Chen, Y.Wang, Y.Huang, X.Duan, Nat. Mater. 2013, 12, 246. [91] H.Liu, N.Han, J.Zhao, RSC Adv. 2015, 5, 17572. [92] Kuo-Chih Lee, Ph.D. thesis, 2017.
摘要: 本實驗使用掃描式光電流顯微術(SPCM)去探究二維材料異質結構電晶體元件,樣品主要由三種材料所組成,分別是MoTe2、SnS2與h-BN,材料經由機械式剝離法剝離成薄片後,藉由乾式轉印平台將材料轉印到氧化層為二氧化矽300 nm厚度的矽基板上。樣品D1的材料疊合順序為MoTe2在上層、SnS2在中間層、h-BN在底層;而樣品D2的材料疊合順序為SnS2在上層、MoTe2在中間層、h-BN在底層,樣品D1與D2的MoTe2/SnS2材料重疊區域面積分別約為5.5 × 4.5 μm2與5 × 3 μm2,樣品量測電極經由電子束微影製程後再使用熱蒸鍍方式製作出鈦金電極(20 nm/80 nm)。在不同的背向閘極電壓作用下,SnS2為n型傳輸表現,而MoTe2為雙載子傳輸表現,元件在VDS = 1V時,電流開關比大小約104。藉由溫度相依電性量測,我們發現元件具有熱激發載子傳輸特性。我們使用了波長為633 nm與488 nm的雷射進行掃描光電流量測,波長為633 nm的雷射可以激發MoTe2,而波長為488 nm的雷射可以激發MoTe2與SnS2。藉由掃描光電流量測可以探測出材料接面間的光電流分布情況,雷射聚焦後的光點大小約直徑為1.5 μm的圓點,掃描的移動間距為0.05 μm。掃描光電流量測結果發現光電流訊號分布主要位於MoTe2與MoTe2/SnS2異質結構的接觸接面,並且偏向於MoTe2,這表示接觸接面區域有明顯的空乏區存在,藉由能帶模型推測出MoTe2/SnS2異質結構接面為type III的能帶對準。另外,藉由比較MoTe2/SnS2/h-BN/SiO2與MoTe2/SnS2/SiO2兩種不同異質結構元件的量測結果,我們發現使用h-BN當作元件底層的介電層時,對於材料與基板之間的電荷捕捉現象有明顯的改善。
We investigate two dimensional (2D) material heterostructures by scanning photocurrent microscopy (SPCM). The vertical heterostructures consist of three different layered materials, MoTe2, SnS2, and h-BN, and are formed by using mechanical exfoliation and dry transfer method onto Si substrates with a 300 nm SiO2-insulating layer. For sample D1, MoTe2 is above SnS2; for sample D2, MoTe2 is placed under SnS2. The overlapped region of samples D1 and D2 are about 5.5 × 4.5 μm2 and 5 × 3 μm2, respectively. The electrodes were made by e-beam lithography and thermal deposition of Ti/Au. Under various back-gate biases, SnS2 is mostly n-type and MoTe2 exhibits a bipolar behavior. The device exhibits an ON/OFF ratio ~ 104 at VDS = 1V. From the temperature dependent data, we found that the devices exhibit thermal activated transport behaviors. We used two types of laser, one with a wavelength of 633nm and the other 488nm. The 633nm laser can only excite the MoTe2 layer and the 488nm laser can excite both MoTe2 and SnS2 layers. We investigate the photocurrent distribution near the junction by scanning photocurrent microscopy. The laser spot size is about 1.5 μm. The scanning step is 0.05 μm. The photocurrent is most significant along the boundary of MoTe2 and MoTe2/SnS2 heterostructure and mainly on the MoTe2 side. This indicates that there is a clear depletion region at this boundary and the MoTe2/SnS2 junction should possess a type III band alignment. Comparing the transport and scanning photocurrent results of MoTe2/SnS2/h-BN/SiO2 and MoTe2/SnS2/SiO2 heterostructure devices, we find that the h-BN layer can improve the charge trapping effect in the interface of MoTe2 and substrate.
URI: http://hdl.handle.net/11455/97880
文章公開時間: 2022-01-09
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.