Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97881
標題: 基於奈米金顆粒薄膜的可撓性應變規研究
Flexible Strain Sensors Based on Gold Nanoparticle Thin Film
作者: 鄭偉文
Wei-Wun Jheng
關鍵字: 奈米金粒子
應變規
感測器
可撓性
gold
nanoparticle
strain
sensor
flexible
引用: [1] Feng, S. Y., et al. Biosensors & Bioelectronics 91: 616-622 (2010). [2] Segev-Bar, M. and H. Haick. Acs Nano 7(10): 8366-8378 (2013). [3] Shiohara, A., et al. Nanoscale 6(16): 9817-9823 (2014). [4] Zhang, S. J., et al. Journal of Alloys and Compounds 652: 48-54 (2015). [5] Segev-Bar, M., et al. Acs Applied Materials & Interfaces 5(12): 5531-5541 (2013). [6] Pang, C., et al. Nature Materials 11(9): 795-801 (2012). [7] Boland, J. J. Nature Materials 9(10): 790-792(2010). [8] Dahiya, R. S., et al. Ieee Transactions on Robotics 26(1): 1-20 (2010). [9] Walker, G. Journal of the Society for Information Display 20(8): 413-440 (2012). [10] Tegin, J. and J. Wikander Industrial Robot-an International Journal 32(1): 64-70 (2005). [11] Patel, S., et al. Journal of Neuroengineering and Rehabilitation 9:21 (2012). [12] Ryu, D., et al. Smart Structures and Systems 8(5): 471-486 (2011). [13] Perelaer, J., et al. Journal of Materials Chemistry 20(39): 8446-8453 (2010). [14] National Instruments, 應變規概述:量測原理、應用與不同類型詳解 (2017) [15] Natalia Olichwer., et al. ACS Appl. Mater. Interfaces 4:6151−6161 (2012) [16] Moreira, H., et al. Nanotechnology 24: 095701 (2013). [17] Cosmin Farcau., et al J. Phys. Chem. C 115:14494–14499 (2011). [18] L. S. Liu., et al. Journal of Nano Research, Vol. 46:P57-63 (2017). [19] Herrmann, J., et al. Applied Physics Letters 91:183105 (2007). [20] Neralagatta M. Sangeetha., et al. J. Phys. Chem. C 117:1935−1940 (2012). [21] Matthew G. Millyard., et al. APPLIED PHYSICS LETTERS 100: 073101 (2012). [22] Salamat Burzhuev., et al. Sensors and Actuators A 203:131– 136 (2013.) [23] Lucas Digianantonio., et al. J. Phys. Chem. C 120:5848−5854 (2016). [24] Yin, J., et al. Acs Nano 5(8): 6516-6526 (2011). [25] Cosmin Farcau., et al. ACS NANO. VOL. 5 NO. 9:7137–7143 (2011). [26] Huth, M. Journal of Applied Physics 107(11):113709 (2010). [27] M. Brust, D. Bethell, C.J. Kiely, D.J. Schiffrin Langmuir, 14:5425 (1998). [28] Abeles, B.; Cheng, P.; Coutts, M. D.; Arie, Y. Adv. Phys. 24:407 (1975). [29] Lizhi Yi., et al. Nano Research Volume 8, Issue 9:2978–2987 (2015) [30] Lu-Qi Tao., et al. Nanoscale, 9:8266-8273 (2017). [31] L. S. Liu., et al. Journal of Nano Research, Vol. 46:57-63 (2017) [32] Jiang, C. W., et al. Scientific Reports 5:11939 (2015). [33] 王崇人,「淺談奈米科學」,科學發展,354期,48-56頁(2002) [34] Warchol, J. B. et al. Histochemistry, 76:567-575. (1982) [35] Mirkin, C. A. et al., Nature, 382:607-609 (1996) [36] Sutherland , J. Colloid. Interface Sci. 48:129 (1992). [37] Jana, N.R.;Gearheart, L.; Murphy, C.J. Langmuir . 17:6782. (2011) [38] Neralagatta M. Sangeetha., et al. J. Phys. Chem. C 117:1935−1940 (2012). [39] Martin, B. R., et al. Advanced Materials 11(12): 1021-1025 (1999). [40] K. J. M., et al. Small 5(14): 1600-1630 (2009). [41] Whitesides, G. M. and B. Grzybowski Science 295(5564): 2418-2421 (2002). [42] Liu, S. T., et al. Physical Chemistry Chemical Physics 4(24): 6059-6062 (2002). [43] Na Shao., et al. Micro & Nano Letters, Vol. 12, Iss. 1: 45–48 (2017). [44] Gregor Schwartz., et al. NATURE COMMUNICATIONS 4:1859 (2013). [45] Wilmer W. Nichols. American Journal of Hypertension VOL. 18:3S-10S (2005). [46] 謝元翔,國立中興大學物理系碩士論文 (2016) [47] I D Johnston., et al. Journal of Micromechanics and Microengineering 24:035017 (2014) [48] Miao Liu., et al. Journal of Micromechanics and Microengineering 19:035028 (2009) [49] H. Henning Winter and Francois Chambon. Journal of Rheology 48:53 (2004) [50] Ying-Chih Lai., et al. Advanced Materials 30:180111 (2018)
摘要: 我們將金奈米粒子自組裝於可撓性的基板上,封裝成一個具有高靈敏度、低成本且輕巧易攜帶的金奈米顆粒薄膜應變規(strain sensor),並探討其基本特性與可能的應用。 實驗方法是將金奈米粒子的周圍修飾是上長度約0.9nm的3-巯基丙酸(3- Mercaptopropionic acid,MPA)分子藉以控制金粒子緊密堆積時的間距。並以離心法將粒子沈積在具可撓性的聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)基板上。封裝完後樣品電阻約落在1-20MΩ之間。當基板受應力產生形變時,奈米粒子間的間距會改變,進而影響樣品的電阻或電容。我們製作的樣品其電阻應變係數最大可達430,電容變化的靈敏度為-36.4及22.5;在壓力的檢測中,對壓力的靈敏度可達0.396 kPa^(-1),在測量微小應變下樣品工作所需的功率只需約15~24 nW。 為了探討樣品的頻率響應,我們利用揚聲器作為振動源,給予樣品10~10kHz的頻率振動,其頻率最高可以達到1kHz。利用樣品的這些優點,我們可以進一步應用在人體低頻動作如脈搏的量測,也具備聲學檢測的潛力。
A high-sensitive, low-cost and portable strain sensing technology based on gold nanoparticles (AuNps) is developed. For this goal, AuNPs were self-assembled on flexible substrates, forming closely packed multilayer films by centrifugal method, followed by appropriate chip packaging technique. AuNPs were modified with 3-mercaptopropionic acid(MPA), which has a length of about 0.9nm. As such the typical resistance of our sensors are in the range of 1-20 MΩ. When strains are applied to the substrate, the distance between adjacent AuNPs is changed, inducing the variations on the device resistance and capacitance. The sensors made on polydimethylsiloxane (PDMS) substrate may have the gauge factor up to 430. It can sense the pressure change with a sensitivity of 0.396kPa^(-1). The nominal power consumption is very low, about 15~24 nW. The capacitance change with a sensitivity of -36.4 and 22.5. For studying the response time, sensors were tested under mechanical vibrations of different frequency. The resistance change can be clearly identified up to a vibration frequency of 1 kHz. With the different frequency response, the sensors can find theirs applications in human pulse sensing, motion detection, and voiceprint recognition.
URI: http://hdl.handle.net/11455/97881
文章公開時間: 2019-08-09
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.