Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97883
DC FieldValueLanguage
dc.contributor吳秋賢zh_TW
dc.contributorChiu-Hsien Wuen_US
dc.contributor.author李御寧zh_TW
dc.contributor.authorYu-Ning Lien_US
dc.contributor.other奈米科學研究所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:08:17Z-
dc.identifier.citation[1] 徐玉峰, 內空氣環境綜合評估指標之探討-以台灣南部工業區辦公大樓為例, 國立成功大學建築研究所(1999). [2] 張凱為, 高靈敏銦鎵鋅氧薄膜氣體感測器特性研究, 國立中興大學奈米科學研究所(2015). [3] 國家環境毒物研究中心. http://nehrc.nhri.org.tw/toxic/toxfaq_detail_mobile.php?id=39 [4] 行政院竟保護署主管法規查詢系統. http://oaout.epa.gov.tw/law/LawContent.aspx?id=FL068252#lawmenu [5] 林文彬, 量子點結構與光譜性質關聯之探討, 國立中山大學材料科學研究所(2015). [6] 劉俊傑, 鉛銻硫三元金屬硫化物半導體敏化太陽能電池, 國立中興大學奈米科學研究所(2013). [7] C Jackson Stolle, Taylor B Harvey and Brian A Korgel, Nanocrystal photovoltaics: a review of recent progress, Current Opinion in Chemical Engineering, 2(2013)160-167. [8] Abdelrazek Mousa, Synthesis and Characterization of PbS Quantum Dots, Lund University the Department of Chemical Physics(2011). [9] Huan Liu, Min Li, Oleksandr Voznyy, Long Hu, Qiuyun Fu, Dongxiang Zhou, Zhe Xia, Edward H. Sargent, and Jiang Tang, Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids, Adv.Mater. 26 (2014) 2718–2724. [10] 李敏, 硫化鉛膠體量子點薄膜氣敏特性與機理研究, 華中科技大學(2016). [11] Min Lia, Dongxiang Zhoua, Jun Zhaoa, Zhiping Zhenga, Jungang Hea, Long Hub,Zhe Xiab, Jiang Tangb, Huan Liu, Resistive gas sensors based on colloidal quantum dot (CQD) solids forhydrogen sulfide detection, Sensors and Actuators B 217 (2015) 198–201. [12] Noboru Yamazoe, Go Sakai, Kengo Shimanoe, Oxide Semiconductor Gas Sensors, Catalysis Surveys from Asia 7 (2003) 66-75. [13] Werner Weppner, Solid-state electrochemical gas sensors, Sensors and Actuators, 12 (1987) 107-119. [14] Inoue T, Fujimori Y, Kato Y, Matsuura, Y, A new and environmentally friendly liquid electrolyte gas sensor, Sensors Proceedings of IEEE, 1 (2004) 138-141. [15] Chi-Hwan Han, Dae-Woong Hong, Sang-Do Han, Jihye Gwak, Krishan C. Singh, Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED, Sensors and Actuators B:Chemical, 125 (2007) 224-228. [16] 江國禎, 非晶銦鎵鋅氧薄膜臭氧氣體感測器,國立中興大學奈米科學研究所 (2014). [17] Sarah Millar, Tips and Tricks for the Lab: Air-Sensitive Techniques (1), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013. [18] Lalit Kumar Sharma1, M. S. Inpasalini1, Samrat Mukherjee1, Defect induced ferromagnetism in luminescent and doped CdS quantum dots, Mater Electron (2015) 26:7621–7628. [19] Fangfang Gao, Qian Chen, Xiaoshan Zhang, Huan Wang, Tianjiao Huang, Liya Zhou, ZnO/TiO2 core–shell heterojunction for CdS and PbS quantum dot-cosensitized solar cells, Current Applied Physics 18 (2018) 546–550.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97883-
dc.description.abstract量子點具備傳統材料所沒有的特性,當粒徑不同時能隙也會不同且量子點具有相當大的接觸面積,這對於氣體的吸附有相當大的優勢,並選為本次研究的氣體感測材料。 本次研究採用熱注入法合成硫化鉛膠體量子點(Lead Sulfide Colloidal Quantum Dots, PbS CQDs)並塗覆在基板上形成薄膜量子點。 利用紫外-可見光光譜儀、X光繞射、掃描式電子顯微鏡以及穿透式電子顯微鏡觀測材料特性。X光繞射圖譜中發現與標準卡(JCPDS 01-078-1057)是吻合的,而在掃描式電子顯微鏡中薄膜表面的孔洞證實亞硝酸鈉(NaNO3)是能夠有效的去除表面油基來達到吸附氣體。在無照光下通入臭氧探討其電性變化,當濃度愈高時反應愈好但高濃度的脫附時間也比較久,為縮短脫附時間嘗試照光的方法來探討。zh_TW
dc.description.abstractThe quantum dots have the special characteristic that the traditional materials do not have. The sizes of different particle have the different energy gap. Large surface area is an advantage for the gas adsorption. Base on this view, we choose quantum dots as our material in this work. In this study, the Lead Sulfide Colloidal Quantum Dots (PbS CQDs) are synthesized by hot injection method and prepare the film by spin coating. Material characteristics were observed UV-vis Spectrum, X-ray diffraction, Scanning Electron Microscope and Transmission Electron Microscope. The X-ray diffraction pattern was consistent with JCPDS and the pores on the surface of the film in the scanning electron microscope confirmed that sodium nitrite (NaNO3) was effective in removing surface oil groups. The electrical properties of PbS films were measured for sensing ozone gas with and without LED irradiation. It had better reaction and longer desorption time when higher concentration. To try to shorten the desorption time and use illuminate.en_US
dc.description.tableofcontents致謝 i 摘要 ........... ii Abstract ...................... ........................ iii 目錄 .......................... iv 表目錄 ............. vi 圖目錄 ............ vii 第一章 緒論 ............ ............ 1 1-1研究背景 ................... 1 1-2氣體簡介 ...................... 2 1-2-1臭氧 ................ ... 2 1-2-2一氧化碳 (CO) ....................... 3 1-2-3二氧化碳 (CO 2) ..... 4 1-2-4空氣汙染體 ...................... 4 1-3量子點簡介 ........... .... 4 1-3-1量子侷限效應 ........................... 5 1-4研究目的 .................. ........ 6 第二章 實驗樣品與感測機制 ......... 7 2-1硫化鉛膠體量子點(PbS CQDs)相關文獻 ... 7 2-2氣體感測器 ... .... 9 2-2-1手提式臭氧分析儀 ...... 10 2-3半導體氣體感測機制 ....... 11 第三章 實驗架構與方法 ........... 14 3-1實驗藥品 ....... ...... 14 3-2材料製備 ......... ...... 15 3-2-1實驗設備 —舒倫克線(Schlenk lines) ..... 15 3-2-2硫化鉛膠體量子點....... 16 3-2-3製備PbS量子點薄膜 ........ 18 3-3樣品量測 ............ 18 3-4分析方法 ........... 20 第四章 實驗結果與分析.................. 22 4-1 PbS膠體量子點特性分析 ........ 22 4-1-1紫外 /可見光分光光譜儀分析 (UV-vis Spectrometers) ..... 22 4-1-2 X光繞射分析 ........ 23 4-1-3穿透式電子顯微鏡(Transmission electron microscope, TEM) ..... 24 4-2 PbS 量子點於臭氧下量測 ........ 26 4-2-1暗室中量測不同臭氧濃度.... 26 4-2-2不同光下量測固定濃度的臭氧......... 32 結論 ........ 37 參考文獻 38zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2021-08-30起公開。zh_TW
dc.subject量子點zh_TW
dc.subject硫化鉛zh_TW
dc.subject氣體感測zh_TW
dc.subjectQuantum dotsen_US
dc.subjectLead Sulfideen_US
dc.subjectgas sensoren_US
dc.title硫化鉛膠體量子點在氣體感測之研究zh_TW
dc.titleStudy of PbS Colloidal Quantum Dots in Gas Sensoren_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-30zh_TW
dc.date.openaccess2021-08-30-
Appears in Collections:奈米科學研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.