Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97884
標題: 銅摻雜對Pb-Sb-S半導體光學及液態敏化太陽電池特性之效應
Effects of Cu doping on the photovoltaic properties of Pb-Sb-S quantum dot sensitized solar cells
作者: 王則元
Tse-Yuan Wang
關鍵字: Cu摻雜
SILAR
Cu-Pb-Sb-S
Cu-doped
SILAR
Cu-Pb-Sb-S
引用: 1. 陳又維,國立中興大學物理所碩士論文(2016) 2. 劉芳芳等,Cu元素對Cu(In, Ga)Se2薄膜及太陽電池的影響Acta Phys. Sin. Vol. 63, No. 6 (2014) 3. Faghaninia, A.,Yu, G.,Aydemir, U.,et al. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions, Physical Chemistry Chemical Physics, 19(9), 6743-6756,(2017) 4. Michael. Grätzel, Nature, 414, 338−344 (2001) 5. 陳佳靜, 國立中興大學物理所碩士論文 (2008) 6. 林義成, 國立彰化師範大學機電系/顯示所 (2005) 7. X. F. Gao, H. B. Li, W. T. Sun, Q. Chen, F. Q. Tang and L. M. Peng, The Journal of Physical Chemistry C, 113, 7531-7535 (2009) 8. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Solar Energy Materials & Solar Cells, 70, 85-101, (2001)
摘要: 本實驗主要是研究〖〖Cu〗_x Pb〗_y 〖Sb〗_z S_u中利用摻雜的方式加入Pb-Sb-S系統之半導體敏化太陽能電池,先前本實驗室的研究成果可將Pb-Sb-S半導體敏化太陽能電池的轉換效率達3.14%,再透過不同的方法將Cu加入Pb-Sb-S系統。 本實驗先利用連續離子層沉積反應法(Successive Ionic Layer Adsorption and Reaction method, SILAR),再透過退火的方式生成Pb-Sb-S量子點敏化太陽能電池做參考值,再透過兩種不同方式將Cu加入並利用UV-vis spectroscopy分析其光學特性,並製作太陽電池來了解其方法所生成的〖〖Cu〗_x Pb〗_y 〖Sb〗_z S_u是否適合作為量子點敏化太陽能電池的材料。 透過Cycle數置換的方式將Cu加入Pb-Sb-S系統量子點半導體的實驗中,可以得知因為Pb-Sb-S最佳參數為6cycle,而〖〖Cu〗_x Pb〗_y 〖Sb〗_z S_u透過UV-vis spectroscopy分析可以得到置換1 cycle Cu可以得到最小的能隙值1.6eV,但在電池效率上遠小於Pb-Sb-S。 透過混和溶液生長的方式將Cu摻雜入Pb-Sb-S中可以得知,SILAR的cycle與能隙值無關,和金屬前驅物半導體中所需半導體的體積莫耳濃度相關,在此法中可以透過UV-vis spectroscopy分析得到在Cu和Pb在1:15的比例混合的溶液做SILAR可以得到1.8eV的能隙值。
In this research, we investigate that using Cu doping into Pb-Sb-S quantum dot sensitized solar cells(QDSSC). the result of our laboratory before, we can get the efficiency of Pb-Sb-S QDSSC is 3.14%. For the experiment, we use the Successive Ionic Layer Adsorption and reaction method, SILAR) and anneal the 〖〖Cu〗_x Pb〗_y 〖Sb〗_z S_u sample. Through the analysis of UV-vis spectroscopy to find out the energy gap of sample. Then make the QDSSC of 〖〖Cu〗_x Pb〗_y 〖Sb〗_z S_u to investigate the efficiency of cells if it is good material for QDSSC. By the experiment of change SILAR cycle to doping Cu into Pb-Sb-S, we can get result that 1 cycle Cu and 5cycle Pb can get a lowest energy gap of 1.6eV. but base on this recipe to make a 〖〖Cu〗_x Pb〗_y 〖Sb〗_z S_u QDDSC cannot get the better efficiency than Pb-Sb-S QDDSC. Through the experiment of mixed solution to doping Cu into Pb-Sb-S, We can find out the energy gap of material and SILAR cycle have no any relationship and only base on the ratio of Cu and Pb Precursor material. And by the analysis using UV-vis spectroscopy, we can find out the ratio of Cu and Pb is 1:15 can get the lowest energy gap of 1.8eV.
URI: http://hdl.handle.net/11455/97884
文章公開時間: 2021-08-28
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.