Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97885
標題: 離子交換法製備Pb-Sb-Se 奈米顆粒: 一種新型太陽能吸收材料及在量子點敏化太陽能電池的應用
Ion exchange-prepared Pb-Sb-Se nanoparticles: A new solar absorber material for quantum dot-sensitized solar cells
作者: 蔣青儒
Cing-Ru Jiang
關鍵字: 離子交換法
量子點敏化太陽能電池
Pb-Sb-Se
quantum dot-sensitized solar cells
引用: [1] H. Zhang, K. Cheng, Y. M. Hou, Z. Fang, Z. X. Pan, W. J. Wu, J. L. Hua and X. H. Zhong, Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach, Journal of the Chemical Society, 48, 11235–11237 (2012) [2] S. Jiao, Q. Shen , I. Mora-Seró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells, American Chemical Society Nano, 9 (1), 908–915 (2015) [3] K. Zhao, Z. Pan, I. Mora-Sero, E. Canovas, H. Wang, Y. Song, X. Q. Gong, J. Wang, M. Bonn, J. Bisquert, and X. Zhong, Boosting Power Conversion Efficiencies of Quantum Dot Sensitized Solar Cells Beyond 8% by Recombination Control, Journal of the American Chemical Society, 137 (16), 5602–5609 (2015) [4] S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, and Xinhua Zhong, Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12 %, The Journal of Physical Chemistry Letters, 8 (3), 559–564 (2017) [5] J. Du, Z. Du, J. S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, and L. J. Wan, Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%, Journal of the American Chemical Society, 138 (12), 4201–4209 (2016) [6] W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J.S. Hu, Q. Shen, and X. Zhong, Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells, ACS Applied Materials & Interfaces, 9 (6), 5328–5336(2017) [7] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, Near Infrared Absorption of CdSexTe1–x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. American Chemical Society Nano , 6, 5215-5222 (2013). [8] V. A. Bazakutsa, N. I. Gnidash, A.K Kul'chitskaya. A.V. Salov, Photoelectric and Optical Properties of Thin Films of Ternary Chalcogenides of the Form Meisbx 2 Vi. RUSS PHYS J 1975, 18, 472-475. [9] Y. W. Chena, S. F. Siea, N. Suriyawonga, B. A. Aragawa, S. S. Chienb, J. B. Shic and M.W. Lee, Pb5Sb8S17 Liquid-Junction Quantum Dot-Sensitized Solar Cells: Improved Performance by Modifying the Particle Size of the TiO2 Electrode, Electrochemical Society, 163, H1122-H1126 (2016) [10] S. F. Sie, N. Suriyawong, J. B. Shi, X. He, L, Zhang, D. J. Singh, and M. W. Lee, Pb5Sb8S17 quantum dot‐sensitized solar cells with an efficiency of 6% under 0.05 sun: Theoretical and experimental studies, Program Photovoltage Research Application, 26, 1-9 (2017) [11] A. Skowron, D. Brown, Crystal Chemistry and Structures of Lead-Antimony Sulfides. Acta Crystallographica, B50, 524-538 (1994) [12] B. A. Aragaw, J. Sun, D. J. Singhc and M. W. Lee, Ion exchange-prepared NaSbSe2 nanocrystals: electronic structure and photovoltaic properties of a new solar absorber material, RSC Advances, 7 , 45470-45477 (2017) [13] S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung, Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells. Journal of Photochemistry and Photobiology A: Chemistry , 179, 135-141 (2006) [14] S. W. Jung, J. H. Kim, H. Kim, C. J. Choi, K. S. Ahn, CdS quantum dots grown by in situ chemical bath deposition for quantum dotsensitized solar cells. Journal Of Applied Physics, 110, 044313 (2011) [15] S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, and Y. M. Yang, Quantum-dot-sensitized solar cells: Assembly of CdS -quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Journal Of Applied Physics Lett, 90, 143517 (2007) [16] K. G. Deepa and J. Nagaraju, Development of SnS quantum dot solar cells by SILAR method, Materials Science in Semiconductor Processing, 27,649-653 (2014) [17] N. S. M. Mustakim, C. A. Ubani, S. Sepeai, N. A. Ludin, M. A. M. Teridi, M. A. Ibrahim, Quantum dots processed by SILAR for solar cell applications, Solar energy, 163,256-270 (2018) [18] H. K. Jun, M. A. Careem, and A. K. Arof, Fabrication, Characterization, and Optimization of CdS and CdSe Quantum Dot-Sensitized Solar Cells with Quantum Dots Prepared by Successive Ionic Layer Adsorption and Reaction, International Journal of Photoenergy, 2014, 14 (2014) [19] C. I. Vazquez, A. M. Baruzzi, and R. A. Iglesias, Charge Extraction From TiO2 Nanotubes Sensitized With CdS Quantum Dots by SILAR Method, IEEE Journal of Photovoltaics, 6,6 (2016) [20] F. Li, C. Chen, F. Tan, C. Li, G. Yue, L. Shen and W. Zhang, Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode, Nanoscale Research Letters, 9(1), 579 (2014) [21] B. O'Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737–740 (1991) [22] S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials & Solar Cells, 90, 1176-11889 (2005) [23] O. Ola, M.M. Maroto-Valer. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24,16-42 (2015) [24] F. Huang, Q. Zhang, B. Xu, J Hou, Y. Wang, R. Masse, S. Peng, J Liu and G. Cao, A comparison of ZnS and ZnSe passivation layers on CdS/CdSe co-sensitized quantum dot solar cells, Journal of Materials Chemistry A, 1, 1-8 (2016) [25] F. Huang, J. Hou., H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu, G. Cao, Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells, Nano Energy, 32,433-440 (2016) [26] I. Hod, V. Gonzalez-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, and A. Zaban, Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process, Journal of Physical Chemistry Letters, 2 (24), 3032–3035 (2011) [27] Z. Yang, C. Y. Chen, C.W. Liu, C. L. Li, and H. T. Chang, Quantum Dot–Sensitized Solar Cells Featuring CuS / CoS Electrodes Provide 4.1% Efficiency, Advanced Energy Material, 1, 259-264 (2011) [28] B. Ashton, M. Stevenson, and J. Canning, Solar hypersensitization of optical fibers, Optics Letters, 32, 6 (2007) [29] D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson, and D. O. Scanlon, Geometry, Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials, The Journal of Physical Chemistry C, 116 (13), 7334–7340 (2012) [30] G.P. Smestad, F.C. Krebs, C.M. Lampert, C.G. Granqvist, K.L. Chopra, X. Mathew, H. Takakura. Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells. Solar Energy Materials and Solar Cells, 92, 371-373 (2008).
摘要: 本論文主要是以合成新型三元素化合物Pb-Sb-Se做為太陽能電池中的吸光材料。Pb-Sb-Se奈米顆粒(nanoparticles - NPs)是由Pb-Sb-S前驅物透過離子交換法製備而得。Pb-Sb-S前驅物是使用連續離子層吸附反應法( Successive ionic layer absorption and reaction - SILAR) 並經過退火將三元化合物量子點合成於多孔性TiO2薄膜內。在XRD (X-ray diffraction) pattern中可以清楚得知,經由Pb-Sb-S前驅物變為Pb-Sb-Se時,XRD的峰明顯向左偏移0.8-1.3度。能量色散X射線光譜(Energy-dispersive X-ray spectroscopy - EDS) 成功證實經由離子交換(S2-Se2-) 完全,得到Pb-Sb-Se相。其光學特性則使用紫外-可見光譜儀(UV-Vis Spectroscopy)做分析與計算平均能隙約為1.45 eV,其低於Pb-Sb-S前驅物(約1.75 eV)。 Pb-Sb-Se NPs 首次被合成且應用在液態量子點敏化太陽能電池上。目前,最佳樣品,在100 % AM 1.5太陽光下,得到電池轉換效率為1.15 %,開路電壓為0.28 V、短路電流為12.01 mA/cm2、填充因子FF為34.22 %;於10 % AM 1.5太陽光下可以得到的電池功率轉換效率為4.18 %、開路電壓為0.26 V、短路電流為3.07 mA/cm2、填充因子為52.25 %。
This thesis describes the new ternary semiconductor sensitizer lead antimony selenide (Pb-Sb-Se) for solar cells. Pb-Sb-Se nanoparticles (NPs) have been prepared from a lead antimony sulfide (Pb-Sb-S) precursor by the solution-based Se2- anion exchange reaction. The Pb-Sb-S precursor was grown on a mesoporous TiO2 electrode using the successive ionic layer adsorption and reaction (SILAR) process. To analyze the property the as-prepared materials were characterized by UV-Visible, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). XRD shows that the synthesized Pb-Sb-Se NPs have the same crystal structure as the Pb-Sb-S precursor with the diffraction angles significantly down-shifted around 0.8-1.3˚. Energy-dispersive X-ray spectroscopy (EDS) confirms the complete anion exchange from Pb-Sb-S and formation of the Pb-Sb-Se phase. UV-visible spectroscopy reveals the Pb-Sb-Se NPs optical energy gap (Eg) to be ~ 1.45 eV that is lower than the Pb-Sb-S precursor (~1.75 eV). Liquid-junction semiconductor-sensitized solar cells were fabricated from the synthesized Pb-Sb-Se semiconductor with polysulfide electrolyte and Pt electrode as counter electrode. The best cell yields a short-circuit current (Jsc) of 8.3 mA/cm2, an open circuit voltage (Voc) of 0.3 V, a fill factor (FF) of 32.8 %, and a power conversion efficiency (PCE) of 1.15 % (one sun) and 4.18 % (10 % sun), respectively.
URI: http://hdl.handle.net/11455/97885
文章公開時間: 10000-01-01
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.