Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97887
標題: 台灣土白蟻的族群建立、覓食物候及營養生態學
Colony establishment, foraging phenology, and nutritional ecology of a fungus-growing termite, Odontotermes formosanus
作者: 邱俊禕
Chun-I Chiu
關鍵字: 多雄性
群體選汰
季節性
覓食策略
雜食性
營養均質化
必須胺基酸
白蟻餌劑
Pleometrosis
group selection
seasonality
foraging strategy
omnivorous
nutritional homogenization
essential amino acids
termite bait
引用: Abe, T., and T. Matsumoto. 1979. Studies on the distribution and ecological role of termites in a lowland rain forest of west Malaysia: (3) Distribution and abundance of termites in Pasoh Forest Reserve. Jap. J. Ecol. 29: 337-351. Abramoff, M. D., P. J. Magalhaes, and S. J. Ram. 2004. Image processing with ImageJ. Biophotonics Internat 11: 36-42. Adams, E. S., L. Atkinson, and M. S. Bulmer. 2007. Relatedness, recognition errors, and colony fusion in the termite Nasutitermes corniger. Behav. Ecol. Sociobiol. 61: 1195-1201. doi:10.1007/s00265-007-0349-7 Agosti, D., J. D. Majer, L. Alonso, and T. Schultz. 2000. Sampling ground-dwelling ants: Case studies from the World's rain forests. Curtin University, Perth, Australia. Akman Gündüz, E., and A. E. Douglas. 2009. Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc. R. Soc. B-Biol. Sci. 276: 987-991. Albanese, A. A. 1950. Protein and amino acid requirements of mammals. Academic Press, New York. Alexander, R. D. 1974. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5: 325-383. Bartz, S. H., and B. Hölldobler. 1982. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behav. Ecol. Sociobiol. 10: 137-147. doi:10.1007/BF00300174 Bagine, R. K. N. 1984. Soil translocation by termites of the genus Odontotermes (Holmgren) (Isoptera: Macrotermitinae) in an arid area of Northern Kenya. Oecologia 64: 263-266. Baldy, V., M. Gessner, and E. Chauvet. 1995. Bacteria, fungi, and the breakdown of leaf litter in a large river. Oikos 74: 93-102. Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67: 1-48. doi:10.18637/jss.v067.i01 Beaver, R. A. 1989. Insect-fungus relationships in the bark and ambrosia beetles, pp. 121-143. In N. Wilding, N. M. Collins, P. M. Hammond and J. F. Webber (eds.), Insect-fungus interactions. Academic press, London. Bernasconi, G., and J. E. Strassmann. 1999. Cooperation among unrelated individuals: the ant foundress case. Trends Ecol. Evol. 14: 477-482. doi: https://doi.org/10.1016/S0169-5347(99)01722-X Bigger, M. 1966. The biology and control of termites damaging field crops in Tanganyika. Bull. Ent. Res. 56: 417-444. Bignell, D. E., and P. Eggleton. 1995. On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Ins. Soc. 42: 57-69. Bobe, A., J.-F. Cooper, C. M. Coste, and M.-A. Muller. 1998. Behaviour of fipronil in soil under Sehelian plain field conditions. Pestic. Sci. 52: 275-281. Bodot, P. 1967. Cycles saisonniers d'activite collective des termites des savanes de basse Cote-d'Ivoire. Insect. Soc. 14: 359-388. Bono, J. M., and B. J. Crespi. 2006. Costs and benefits of joint colony founding in Australian Acacia thrips. Insect. Soc. 53: 489-495. doi:10.1007/s00040-005-0902-9 Boomsma, J. J. 2007. Kin selection versus sexual selection: Why the ends do not meet. Curr. Biol. 17: R673-R683. doi: https://doi.org/10.1016/j.cub.2007.06.033 Boomsma, J. J. 2009. Lifetime monogamy and the evolution of eusociality. Phil. Trans. R. Soc. B 364: 3191-3207. doi: 10.1098/rstb.2009.0101 Botha, W. J., and A. Eicker. 1992. Nutritional value of Termitomyces mycelial protein and growth of mycelium on natural substrates. Mycol. Res. 96: 350-354. Bourguignon, T., N. Lo, S. L. Cameron, J. Sobotnik, Y. Hayashi, S. Shigenobu, D. Watanabe, Y. Roisin, T. Miura, and T. A. Evans. 2014. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 36: 406-421. Brandl, R., M. Hacker, R. K. N. Bagine, and M. Kaib. 2001. Geographic variation of polygyny in the termite Macrotermes michaelseni (Sjöstedt). Insect. Soc. 48: 134-137. doi:10.1007/PL00001755 Bursell, E. 1967. The excretion of nitrogen in insects. Adv. Insect Physiol. 4: 33-67. Buxton, R. D. 1981. Termites and the turnover of dead wood in an arid tropical environment. Oecologia 51: 379-384. Cahan, S., and G. E. Julian. 1999. Fitness consequences of cooperative colony founding in the desert leaf-cutter ant Acromyrmex versicolor. Behav. Ecol. 10:585-591. doi: https://doi.org/10.1093/beheco/10.5.585 Cao, R., and N.-Y. Su. 2014. Tunneling and food transportation activity of four subterranean termite species (Isoptera: Rhinotermitidae) at various temperatures. Ann. Entomol. Soc. Am. 107: 696-701. Cao, R., and N.-Y. Su. 2016. Temperature preferences of four subterranean termite species (Isoptera: Rhinotermitidae) and temperature-dependent survivorship and wood-consumption rate. Ann. Entomol. Soc. Am. 109: 64-71. Chiu, C.-I., H. F. Li, and M. M. Yang. 2010. The geographical distribution and the dispersal flight season of Odontotermes formosanus (Isoptera: Termitidae) in Taiwan. Formosan Entomol. 30: 193-202. doi: 10.6662/TESFE 10 Chiu, C.-I., H.-T. Yeh, M.-J. Tsai, and H.-F. Li. 2016. Naturalization and control of Coptotermes gestroi (Blattodea: Rhinotermitidae) in a Taiwanese forest. J. Econ. Entomol. 109: 1317-1325. Chiu, C.-I., K.-B. Neoh, and H.-F. Li. 2018. Colony-founding success of pleometrosis in a fungus-growing termite Odontotermes formosanus. Behav. Ecol. Sociobiol. 72: 13. Collins, M. S. 1969. Water relations in termites. In: Krishna K, Weesner FM (eds) Biology of Termites. Academic Press, New York, pp 433-458 Collins, N. M. 1977. The population ecology and energetic of Macrotermes bellicosus Smeathman (Isoptera). University of London, London. Collins, N. M. 1981. The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia 51: 389-399. Cornelius, M. L., and W. L. Osbrink. 2011. Effect of seasonal changes in soil temperature and moisture on wood consumption and foraging activity of Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 104: 1024-1030. Dadd, R. H., and D. L. Krieger. 1968. Dietary amino acid requirements of the aphid, Myzus persicae. J. Insect Physiol. 14: 741-764. Dadd, R. H. 1978. Amino acid requirements of the mosquito Culex pipiens: Asparagine essential. J. Insect Physiol. 24: 25-30. Dadd, R. H. 1981. Essential fatty acids for mosquitoes, other insects and vertebrates, pp. 189-214. In G. Bhaskaran, S. F. Friedman and J. G. Rodriguez (eds.), Current Topics in Insect Endocrinology and Nutrition. Springer, New York. Darlington, J. P. E. C. 1982. The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. J. Zool. 198: 237-247. Darlington, J. P. E. C. 1985. Multiple primary reproductives in the termite Macrotermes michaelseni (Sjöstedt). In: Watson JAL, Okot-Kotber BM, Noirot C (eds). Pergamon Press, Oxford, pp 187-200 Darlington, J. P. E. C. 1988. Multiple reproductives in nests of Macrotermes herus (Isoptera: Termitidae). Sociobiology 14: 347-351. Deacon, J. 2006. Fungal Biology. Blackwell Publishing, MA, USA. Dejean, A., and R. Feneron. 1999. Predatory behaviour in the ponerine ant, Centromyrmex bequaerti: a case of termitolesty. Behav. Process. 47: 125-133. Dejean, A., B. Schatz, J. Orivel, G. Beugnon, J. P. Lachaud, and B. Corbara. 1999. Feeding preferences in African ponerine ants: A cafeteria experiment (Hymenoptera: Formicidae). Sociobiology 34: 555-568. Dejean, A., M. Kenne, and C. S. Moreau. 2007. Predatory abilities favour the success of the invasive ant Pheidole megacephala in an introduced area. J. Appl. Entomol. 131: 625-629. Delgarde, S., and C. Rouland-Lefèvre. 2002. Evaluation of the effects of thiamethoxam on three species of African termite (Isoptera: Termitidae) crop pests. J. Econ. Entomol. 95: 531-536. Deligne, J., A. Quennedy, and M. S. Blum. 1981. The enemies and defense mechanisms of termites, pp. 1-76. In H. R. Hermann (ed.), Social Insects, vol. 2. Academic Press, New York NY. Denlinger, D. L. 1980. Seasonal and annual variation of insect abundance in the Nairobi National Park, Kenya. Biotropica 12: 100-106. Dix, N. J., and J. Webster. 1995. Fungal Ecology. Chapman & Hall, London. Douglas, A. E., and W. A. Prosser. 1992. Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. J. Insect Physiol. 38: 565-568. Drummond, H. 1888. Tropical Africa. Hodder and Houghton, London. Edwards, R., and A. E. Mill. 1986. Termites in buildings. Research and Development Division, Rentokil Limited, Felcourt, East Grinstead. El-Bakri, A., N. Eldein, M. A. Kambal, R. J. Thomas, and T. G. Wood. 1989. Colony foundation and development in Microtermes sp. nr. albopartitus (Isoptera: Macrotermitinae) in Sudan. Sociobiology 15: 169-173. Evans, T. A., and N. Iqbal. 2014. Termite (order Blattodea, infraorder Isoptera) baiting 20 years after commercial release. Pest Manag. Sci. 71: 897-906. Felton, G. W. 1996. Nutritive quality of plant protein: Sources of variation and insect herbivore responses. Arch. Insect Biochem. Physiol. 32: 107-130. Fotso Kuate, A., M. Tindo, R. Hanna, M. Kenne, and G. Goergen. 2008. Foraging activity and diet of the ant, Anoplolepis tenella Santschi (Hymenoptera: Formicidae), in southern Cameroon. Afr. Entomol. 16: 107-114. Freymann, B. P., S. N. Visser, E. P. Mayemba, and H. Olff. 2007. Termites of the genus Odontotermes are optionally keratophagous. Ecotropica 13: 143-147. Freymann, B. P., R. Buitenwerf, O. DeSouza, and H. Olff. 2008. The importance of termites (Isoptera) for the recycling of herbivore dung in tropical ecosystem: a review. Eur. J. Entomol. 105: 165-173. Frith, C. B., and D. W. Firth. 1985. Seasonality of insect abundance in an Australian upland tropical rainforest. Aust. J. Ecol. 10: 237-248. Fustec, E., E. Chauvet, and G. Gas. 1989. Lignin degradation and humus formation in alluvial soils and sediments. Appl. Environ. Microbiol. 55: 922-926. Ge, Y.–H., B.–R. Ding, B. Chen, J.-C. Yan, and B.-Y. Chen. 2008. Nest distribution patterns of Odontotermes fontanellus Kemner in the dam of Maguantang reservoir. J. Anhui Agric. Univ. 35: 297-300. Giraudoux, P. 2017. Pgirmess: data analysis in ecology. R package version 1.6.7. https://CRAN.R-project.org/package=pgirmess Gosalbes, M. J., A. Lamelas, A. Moya, and A. Latorre. 2008. The striking case of tryptophan provision in the cedar aphid Cinara cedri. J. Bacteriol. 190: 6026-6029. Greenstone, M. H. 1979. Spider feeding behaviour optimises dietary essential amino acid composition. Nature 282: 501-503. Gupta, S., V. T. Gajbhiye, and R. K. Gupta. 2008. Soil dissipation and leaching behavior of a neonicotinoid insecticide thiamethoxam. Bull. Environ. Contam. Toxicol. 80: 431-437. Hacker, M., M. Kaib, R. K. N. Bagine, J. T. Epplen, and R. Brandl. 2005. Unrelated queens coexist in colonies of the termite Macrotermes michaelseni. Mol. Ecol. 14: 1527-1532. doi:10.1111/j.1365-294X.2005.02507.x Hartke, T. R. 2010. Breeding strategies and the reproductive ecology of Nasutitermes corniger. Dissertation, Northeastern University. Hartke, T. R., and B. Baer. 2011. The mating biology of termites: a comparative review. Anim. Behav. 82:927-936. Hartke, T. R., and R. B. Rosengaus. 2013. Costs of pleometrosis in a polygamous termite. Proc. R. Soc. B 280: 20122563. doi:10.1098/rspb.2012.2563 Harper, A. E., and Q. R. Rogers. 1965. Amino acid imbalance. Proc. Nutr. Soc. 24: 173-200. Herbers, J. M. 1985. Seasonal structuring of a north temperate ant community. Insect. Soc. 32: 224-240. Higashi, M., T. Abe, and T. P. Burns. 1992. Carbon-nitrogen balance and termite ecology. Proc. R. Soc. B-Biol. Sci. 249: 303-308. Hölldobler, B., and E. O. Wilson. 1990. The ants. Springer-Verlag, Berlin. Huan, Z., J. Luo, Z. Xu, and D. Xie. 2016. Acute toxicity and genotoxicity of carbendazim, main impurities and metabolite to earthworms (Eisenia foetida). Bull. Environ. Contam. Toxicol. 96: 62-69. Hughes, W. O. H., B. P. Oldroyd, M. Beekman, and F. L. W. Ratnieks. 2008. Ancestral monogamy shows kin selection is key to evolution of eusociality. Science 320: 1213-1216. doi: 10.1126/science.1156108 Hyodo, F., I. Tayasu, T. Inoue, J. I. Azuma, T. Kudo, and T. Abe. 2003. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct. Ecol. 17: 186-193. Inbar, Y., Y. Chen, and Y. Hadar. 1989. Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci Soc Am J. 53: 1695-1701. Inkscape Community Teams. 2016. Inkscape 0.91. Inkscape Community Teams, Boston, USA. http://www.inkscape.org/ Inoue, T., N. Kirtibutr, and T. Abe. 2001. Underground passage system of Macrotermes carbonarius (Isoptera,Termitidae) in a dry evergreen forest of northeast Thailand. Insect. Soc. 48: 372-377. Inward, D. J. G., A. P. Vogler, and P. Eggleton. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44: 953-967. Johnson, R. A. 1981. Colony development and establishment of the fungus comb in Microtermes sp. nr. usambaricus (Sjöstedt) (Isoptera: Macrotermitinae) from Nigeria. Ins. Soc. 28: 3-12. Jmhasly, P., and R. H. Leuthold. 1999. The system of underground passages in Macrotermes subhyalinus and comparison of laboratory bioassays to field evidence of intraspecific encounters in M. subhyalinus and M. bellicosus (Isoptera,Termitidae). Insect. Soc. 46: 332-340. Kalita, D., and C. N. Saikia. 2004. Chemical constituents and energy content of some latex bearing plants. Bioresour. Technol. 92: 219-227. Karowe, D. N., and M. M. Martin. 1989. The effects of quantity and quality of diet nitrogen on the growth, efficiency of food utilization, nitrogen budget, and metabolic rate of fifth-instar Spodoptera eridania larvae (Lepidoptera: Noctuidae). J. Insect Physiol. 35: 699-708. Kaspari, M., L. Alonso, and S. ODonnell. 2000. Three energy variables predict ant abundance at a geographical scale. Proc. R Soc. B 267: 485-489. Kathage, J., P. Castanera, J. L. Alonso-Prados, M. Gomez-Barbero, and E. Rodriguez-Cerezo. 2018. The impact of restrictions on neonicotinoid and fipronil insecticides on pest management in maize, oilseed rape and sunflower in eight European Union regions. Pest Manag. Sci. 74: 88-99. Korb, J., and K. E. Linsenmair. 2001. Resource availability and distribution patterns, indicators of competition between Macrotermes bellicosus and other macro‐detritivores in the Comoé National Park, Côte d'Ivoire. Afr. J. Ecol. 39: 257-265. Kok, L. T., D. M. Norris, and H. M. Chu. 1970. Sterol metabolism as a basis for a mutualistic symbiosis. Nature 225: 661-662. Krishna, K., D. A. Grimaldi, V. Krishna, and M. S. Engel. 2013. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist. 377: 1-2704. La Fage, J. P., M. I. Haverty, and W. L. Nutting. 1976. Environmental factors correlated with the foraging behavior of a desert subterranean termite Gnathamitermes perplexus (Banks) (Isoptera: Termitidae). Sociobiology 2: 155-169. Lai, Y.-Y., G.-H. Li, C.-I. Chiu, M.-J. Tsai, H.-T. Yeh, and H.-F. Li. 2018. Termite monitoring and control in the surroundings of wood houses in Fenghuang Nature Education Area. Jour. Exp. For. Nat. Taiwan Univ 32: 139-146. Lee, K. E., and T. G. Wood. 1971. Termites and soils. Academic Press, London, UK. Lee, K. P., S. J. Simpson, and K. Wilson. 2008. Dietary protein-quality influences melanization and immune function in an insect. Funct. Ecol. 22: 1052-1061. Lee, C.-C., K.-B. Neoh, and C. Y. Lee. 2014. Colony size affects the efficacy of bait containing chlorfluazuron against the fungus-growing termite Macrotermes gilvus (Blattodea: Termitidae). J. Econ. Entomol. 107: 2154-2162. Lee, C. Y. 2002. Subterranean termite pest and their control in the urban environment in Malaysia. Sociobiology 1: 3-9. Lee, C. Y., C. Vongkaluang, and M. Lenz. 2007. Challenges to subterranean termite management of multi-genera faunas in southeast Asia and Autralia. Sociobiology 50: 213-221. Lenth, R. V. 2016. Least-squares means: the R package lsmeans. J. Stat. Softw. 69: 1-33. doi: 10.18637/jss.v069.i01 Lepage, M. G. 1981. The impact of the foraging populations of Macrotermes michaelseni (1) (Sjiistedt) (Isoptera, Macrotermitinae) on a semi-arid ecosystem (Kajiado-Kenya). Insect. Soc. 28: 297-308. Leuthold, R. H., S. Badertscher, and H. Imboden. 1989. The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Ins. Soc. 36: 328-338. Levings, S. C., and D. M. Windsor. 1984. Litter moisture content as a determinant of litter arthropod distribution and abundance during the dry season on Barro Colorado Island, Panama. Biotropica 16: 125-131. Li, H.-F., and N.-Y. Su. 2008. Sand displacement during tunnel excavation by the Formosan subterranean termite. Ann. Entomol. Soc. Am. 101: 456-462. doi:https://doi.org/10.1603/0013-8746(2008)101[456:SDDTEB]2.0.CO;2 Li, H.-F., and N.-Y. Su. 2009. Buccal manipulation of sand particles during tunnel excavation of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 102:333-338. doi:http://dx.doi.org/10.1603/008.102.0216 Li, H., C. Dietrich, N. Zhu, A. Mikaelyan, B. Ma, R. Pi, Y. Liu, M. Yang, A. Brune, and J. Mo. 2015. Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus. Environ. Microbiol. 18: 1440-1451. Li, H., D. J. Yelle, C. Li, M. Yang, J. Ke, R. Zhang, Y. Liu, N. Zhu, S. Liang, X. Mo, J. Ralph, C. R. Currie, and J. Mo. 2017. Lignocellulose pretreatment in a fungus-cultivating termite. Proc. Natl. Acad. Sci. U. S. A. 114: 4709-4714. Lin, C. C., and W. J. Wu. 2003. The ant fauna of Taiwan (Hymenoptera: Formicidae), with keys to subfamilies and genera. Annu. Nat. Taiwan Mus. 46: 5-69. Linderstrøm-Lang, K., and F. Duspiva. 1935. Keratin digestion in the larvae of the clothes moth. Nature 135: 1039-1040. Longhurst, G., and P. E. Howse. 1978. The use of kairomones by Megaponera foetens (Fab.) (Hymenoptera: Formicidae) in the detection of its termite prey. Anim. Behav. 26: 1213-1218. Longhurst, G., and P. E. Howse. 1979. Foraging, recruitment and emigration in Megaponera foetens (Fab.) (Hymenoptera: Formicidae) from the Nigerian Guinea Savana. Insect. Soc. 26: 204-215. Longhurst, G., R. A. Johnson, and T. G. Wood. 1978. Predation by Megaponera foetens (Fabr.) (Hymenoptera: Formicidae) on termites in the Nigerian Southern Guinea Savanna. Oecologia 32: 101-107. Lys, J.-A., and R. H. Leuthold. 1991. Morphology of the gallery system around the nest and gallery development under experimental conditions in the termite Macrotermes bellicosus (Smeathman). Insect. Soc. 38: 63-76 Majolo, B., A. de Vizioli, and G. Schino. 2008. Costs and benefits of group-living in primates: group size effects on behaviour and demography. Anim. Behav. 76: 1235-1247. doi: https://doi.org/10.1016/j.anbehav.2008.06.008 Majumder, R., S. P. Banik, L. Ramrakhiani, and S. Khowala. 2015. Bioremediation by alkaline protease (AkP) from edible mushroom Termitomyces clypeatus: optimization approach based on statistical design and characterization for diverse applications. J. Chem. Technol. Biotechnol. 90: 1886-1896. Marrs, T. C. 2012. Toxicology of insecticides to mammals. Pest Manag. Sci. 68: 1332-1336. Martin, M. M., and N. A. Weber. 1969. The cellulose-utilizing capability of the fungus cultured by the attine ant Atta colombica tonsipes Ann. Entomol. Soc. Am.: 1386-1387. Martin, M. M., and J. S. Martin. 1978. Cellulose digestion in the midgut if the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science 199: 1453-1455. Martin, M. M., and J. S. Martin. 1979. The distribution and origins of the cellulolytic enzymes of the higher termite, Macrotermes natalensis. Physiol. Zool. 52: 11-21. Martin, M. M., R. M. Carman, and J. G. MacConnell. 1969. Nutrients derived from the fungus cultured by the fungus-growing ant Atta colombica tonsipes. Ann. Entomol. Soc. Am. 62: 11-13. Maschwitz, U., and P. Schönegge. 1983. Forage communication, nest moving recruitment, and prey specialization in the oriental ponerine Leptogenys chinensis. Oecologia 57: 175-182. Mathur, R. N. Enemies of termites (white ants), pp. 137-139. In M. L. Roonwal (ed.), International Symposium on Termites in the Humid Tropics. United Nations: Educational, Scientific and Cultural Organization, New Delhi. Mauldin, J. K., N. M. Rich, and D. W. Cook. 1978. Amino acid synthesis from 14C-acetate by normally and abnormally faunated termites, Coptotermes formosanus. Insect Biochem. 8: 105-109. McCance, R. A., and E. M. Widdoson. 1964. Protein metabolism and requirements in the newborn, pp. 225-245. In A. Munro (ed.), Mammalian protein metabolism, vol. 2. Academic Press, New York. McMahan, E. A., S. Kumar, and P. K. Sen-Sarma. 1984. Male/female (size) polyethism in workers of Odontotermes distans Holmgren and Holmgren (Isoptera: Termitidae: Macrotermitinae). Ann. Entomol. Soc. Am. 77: 429-434. Mitlin, N., D. H. Vickers, and P. A. Hedin. 1964. End products of metabolism in the boll weevil, Anthonomus grandis Boheman: non-protein amino acids in the faeces. J. Insect Physiol. 10: 393-397. Miyaguni, Y., K. Sugio, and K. Tsuji. 2013. Antennal cropping in the Asian dry-wood termite, Neotermes koshunensis. Insect. Soc. 60:223-229. doi: 10.1007/s00040-013-0286-6 Molvar, E. M., and R. T. Bowyer. 1994. Costs and benefits of group living in a recently social ungulate: The Alaskan moose. J. Mammal. 75: 621-630. doi: https://doi.org/10.2307/1382509 Mora, P., C. Rouland, and J. Renoux. 1996. Foraging, nesting and damage caused by Microtermes subhyalinus (Isoptera: Termitidae) in a sugarcane plantation in the Central African Republic. Bull. Entomol. Res. 86: 387-395. Moir, R. J. 1994. The 'carnivorous' herbivores, pp. 87-102. In D. J. Chivers and R. Langel (eds.), The digestive system in mammals: Food form and function. Cambridge University Press, Cambridge. Mueller, U. G., T. R. Schultz, C. R. Currie, R. M. Adams, and D. Malloch. 2001. The origin of the attine ant-fungus mutualism. Q. Rev. Biol. 76: 169-197. Mueller, U. G., N. M. Gerardo, D. K. Aanen, D. L. Six, and T. R. Schultz. 2005. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 36: 563-595. Nalepa, C. A., T. A. Evans, and M. Lenz. 2011. Antennal cropping during colony foundation in termites. ZooKeys 148:185-196. doi: 10.3897/zookeys.148.1854 Nation, J. L. 2002. Insect physiology and biochemistry. CRC Press, Boca Raton. Neef, A., A. Latorre, J. Pereto, F. J. Silva, M. Pignatelli, and A. Moya. 2011. Genome economization in the endosymbiont of the wood roach Cryptocercus punctulatus due to drastic loss of amino acid synthesis capabilities. Genome Biol. Evol. 3: 1437-1448. Neoh, K.-B., and C. Y. Lee. 2009. Developmental stages and castes of two sympatric subterranean termites Macrotermes gilvus and Macrotermes carbonarius (Blattodea: Termitidae). Ann. Entomol. Soc. Am. 102: 1091-1098. Neoh, K.-B., N. A. Jalaludin, and C. Y. Lee. 2011. Elimination of field colonies of a mound-building termite Globitermes sulphureus (Isoptera: Termitidae) by bitrifluron bait. J. Econ. Entomol. 104: 607-613. Nobre, T., and D. K. Aanen. 2012. Fungiculture or termite husbandry? The ruminant hypothesis. Insects 3: 307-323. Nobre, T., C. Rouland-Lefèvre, and D. K. Aanen. 2010. Comparative biology of fungus cultivation in termites and ants, pp. 193-210. In D. E. Bignell, Y. Roisin and N. Lo (eds.), Biology of termites: A modern synthesis. Springer, Dordrecht. Noirot, C., and C. Noirot-Timothee. 1969. The digestive system, pp. 49-88. In K. Krishna and F. M. Weesner (eds.), Biology of Termites, vol. I. Academic Press, New York. Nowak, M. A., C. E. Tarnita, and E. O. Wilson. 2010. The evolution of eusociality. Nature 466doi:10.1038/nature09205 Nutting, W. L. 1969. Flight and colony foundation. In: Krishna K, Weesner FM (eds) Biology of Termites. Academic Press, New York, pp 233-282. Overson, R., J. Gadau, R. M. Clark, S. C. Pratt, and J. H. Fewell. 2014. Behavioral transitions with the evolution of cooperative nest founding by harvester ant queens. Behav. Ecol. Sociobiol. 68: 21-30. doi: 10.1007/s00265-013-1618-2 Peppuy, A., A. Robert, J.-P. Delbecque, J.-L. Leca, C. Rouland, and C. Bordereau. 1998. Efficacy of hexaflumuron against the fungus-growing termite Pseudacanthotermes spiniger (Sjostedt) (Isoptera, Macrotermitinae). Pestic. Sci. 54: 22-26. Pinheiro, F., I. R. Diniz, D. Coelho, and P. S. Bandeira. 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austr. Ecol. 27: 132-136. Pokarzhevskii, A. D., D. P. Zaboyev, G. N. Ganin, and S. A. Gordienko. 1997. Amino acids in earthworms: Are earthworms ecosystemivorous? Soil Biol. and Biochem. 29: 559-567. R Development Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org Reeve, H. K., and P. Nonacs. 1992. Social contracts in wasp societies. Nature 359: 823-825. doi:10.1038/359823a0 Rissing, S. W., and G. B. Pollock. 1987. Queen aggression, pleometrotic advantage and brood raiding in the ant Veromessor pergandei (Hymenoptera: Formicidae). Anim. Behav. 35: 975-981. doi: https://doi.org/10.1016/S0003-3472(87)80154-9 Rissing, S. W., and G. B. Pollock. 1991. An experimental analysis of pleometrotic advantage in the desert seed-harvester ant Messor pergandei (Hymenoptera: Formicidae). Insect. Soc. 38: 205-211. doi:10.1007/BF01240970 Rosengaus, R. B., J. F. A. Traniello, and M. S. Bulmer. 2010. Ecology, behavior and evolution of disease resistance of termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, NY, pp 165-191. Rouland-Lefèvre, C. 2010. Termites as pests of agriculture, pp. 499-517. In D. E. Bignell, Y. Roisin and N. Lo (eds.), Biology of termites: A modern synthesis. Springer, Dordrecht. Rouland-Lefèvre, C., and D. E. Bignell. 2001. Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae, pp. 733-756. In J. Seckbach (ed.), Symbiosis. Kluwer Academic Publishers, the Netherlands. Rouland-Lefèvre, C., and P. Mora. 2002. Control of Ancistrotermes guineensis Silvestri (Termitidae: Macrotermitinae), a pest of sugarcan in Chad. Int. J. Pest Manag. 48: 81-86. Rouland-Lefèvre, C., T. Inoue, and T. Johjima. 2006. Termitomyces/termite interactions, pp. 335-350. In H. Konig and A. Varma (eds.), Intestinal microorganisms of soil invertebrates. Springer-Verlag, New York. Rust, M. K., and N.-Y. Su. 2012. Managing social insects of urban importance. Annu. Rev. Entomol. 57: 355-375. Rust, M. K., D. A. Reierson, E. Paine, and L. J. Blum. 2000. Seasonal activity and bait preferences of the argentine ant (Hymenoptera: Formicidae). J. Agric. Urban Entomol. 17: 201-212. Sabree, Z. L., C. Y. Huang, G. Arakawa, G. Tokuda, N. Lo, H. Watanabe, and N. A. Moran. 2012. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Appl. Environ. Microbiol. 78: 204-210. Sands, W. A. 1973. Termites as pests of tropical food crops. PANS 19: 167-177. Sanders, N. J., J.-P. Lessard, R. R. Dunn, and M. C. Fitzpatrick. 2007. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants accross spatial grains. Glob. Ecol. Biogeogr. 16: 640-649. Schuurman, G. 2005. Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86: 1236-1249. Simpson, R. J., M. R. Neuberger, and T.-Y. Liu. 1976. Complete amino acid analysis of proteins from single hydrolysate. J. Biol. Chen. 251: 1936-1940. Sinclair, A. N., R. W. Butler, and J. Picton. 1989. Feeding of the chewing louse Damalinia ovis (Schrank) (Phthiraptera: Trichodectidae) on sheep. Vet. Parasitol. 30: 233-251. Siqueira, J. O., M. G. Nair, R. Hammerschmidt, G. R. Safir, and A. R. Putnam. 1991. Significance of phenolic compounds in plant-soil-microbial systems. Crit. Rev. Plant Sci. 10: 63-121. Slansky, F., and J. M. Scriber. 1985. Food consumption and utilization, pp. 87-163. In G. A. Kerkut and L. I. Gilbert (eds.), Comorehensive insect physiology, biochemistry and pharmacology. Pergamon, Oxford. Sokal, R. R., and F. J. Rohlf. 1995. Biometry. Freeman, New York. Sommer, K., and B. Holldobler. 1995. Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim. Behav. 50: 287-294. doi: https://doi.org/10.1006/anbe.1995.0244 Sudhakar, K., and G. K. Veeresh. 1985. Crop loss estimation due to termite (Odontotermes obesus and Microtermes obesi) on dryland crops. J. Soil Biol. Ecol. 5: 58-64. Stanley-Samuelson, D. W., R. A. Jurenka, C. Cripps, G. J. Blomquist, and M. de Renobales. 1988. Fatty acids in insects: Composition, metabolism, and biological significance. Arch. Insect Biochem. Physiol. 9: 1-33. Su, N.-Y., and R. H. Scheffrahn. 1986. A method to access, trap, and monitor field populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the urban environment. Sociobiology 12: 299-304. Su, N.-Y., and R. H. Scheffrahn. 1988. Foraging population and territory of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in an urban environment. Sociobiology 14: 353-359. Su, N.-Y., and R. H. Scheffrahn. 1993. Laboratory evaluation of two chitin synthesis inhibitors, hexafumuron and diflubenzuron, as bait toxicants against Formosan and Eastern subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. 86: 1453-1457. Su, N.-Y., and R. H. Scheffrahn. 1998. A review of subterranean termite control practices and prospects for integrated pest management programmes. Integrated Pest Manag. Rev. 3: 1-13. Su, N.-Y., and R. H. Scheffrahn. 2000. Termites as pests of buildings, pp. 437-453. In T. Abe and M. Higashi (eds.), Termites: Evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Netherlands. Su, N.-Y., P. Ban, and R. H. Scheffrahn. 2004. Use of a bait impact index to assess effects of bait application against populations of Formosan subterranean termite (Isoptera: Rhinotermitidae) in a large area. J. Econ. Entomol. 97: 2029-2034. Tamashiro, M., J. K. Fujii, and P.-Y. Lai. 1973. A simple method to observe, trap, and prepare large numbers of subterranean termites for laboratory and field experiments. Environ. Entomol. 2: 721-722. Tanaka, L. K., and S. K. Tanaka. 1982. Rainfall and seasonal changes in arthropod abundance on a tropical oceanic island. Biotropica 14: 114-123. Tarpy, D. R., D. C. Gilley, and T. D. Seeley. 2004. Levels of selection in a social insect: a review of conflict and cooperation during hony bee (Apis mellifera) queen replacement. Behav. Ecol. Sociobiol. 55: 513-523. doi:10.1007/s00265-003-0738-5 Therneau, T. M. 2015. Coxme: mixed effects Cox models. R package version 2.2-5, http://CRAN.R-project.org/package=coxme Thorne, B. L. 1984. Polygyny in the Neotropical termite Nasutitermes corniger: life history consequences of queen mutualism. Behav. Ecol. Sociobiol. 14: 117-136. doi:10.1007/BF00291903 Thorne, B. L. 1985. Termite polygyny: the ecological dynamics of queen mutualism. In: Hölldobler B, Lindauer M (eds) Experimental Behavioral Ecology and Sociobiology. Gustav Fischer Verlag, Stuttgart, Germany, pp 325-341. Tiben, A., M. J. Pearce, T. G. Wood, M. A. Kambal, and R. H. Cowie. 1990. Damage to crops by Microtermes najdensis (Isoptera, Macrotermitinae) in irrigated semi-desert areas of the red sea coast. 2. cotton in the Tokar delta region of Sudan. Trop. Pest Manag. 36: 296-304. Traniello, J. F. A. 1981. Enemy deterrence in the recruitment strategy of a termite: Soldier-organized foraging in Nasutitermes costalis. Proc. Natl. Acad. Sci. USA 78: 1976-1979. Traniello, J. F. A., and R. H. Leuthold. 2000. Behavior and ecology of foraging in termites, pp. 141-168. In T. Abe and M. Higashi (eds.), Termites: Evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Netherlands. Trivedi, J. P., A. P. Srivastava, K. Narain, and R. C. Chatterjee. 1991. The digestion of wool fibres in the alimentary system of Anthrenus flavipes larvae. Int. Biodeterior. 27: 327-336. Tromp-van Heerveld, H. J., and J. J. McDonnell. 2005. On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Adv. Water Resour. 29: 293-310. Tsai, P.-H., N.-S. Chen, A.-K. Chen, and C.-H. Chen. 1965. Architecture and development of the termitarium of Odontotermes (O.) formosanus Shiraki. Acta. Entomol. Sin. 14: 53-70. Tschinkel, W. R., and D. F. Howard. 1983. Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behav. Ecol. Sociobiol. 12: 103-113. doi: 10.1007/BF00343200 Ueckert, D. N., M. C. Bodine, and B. M. Spears. 1976. Population density and biomass of the desert termite Gnathamitermes tubiformans (Isoptera: Termitidae) in a shortgrass prairie: Relationship to temperature and moisture. Ecology 57: 1273-1280. Ulyshen, M. D. 2016. Wood decomposition as influenced by invertebrates. Biol. Rev. 91: 70-85. Usher, M. B. 1979. Markovian approaches to ecological succession. J. Anim. Ecol. 48: 413-426. Varadachari, C., and K. Ghosh. 1984. On humus formation. Plant Soil 77: 305-313. Vinson, S. B. 1968. Distribution of an oil, carbohydrate, and protein food source to members of the imported fire ant colony. J. Econ. Entomol. 61: 712-714. Wilson, E. O. 2005. Kin selection as the key to altruism: Its rise and fall. Soc. Res. 72: 159-166. Wilson, E. O., and B. Hölldobler. 2005. Eusociality: Origin and consequences. Proc. Natl. Acad. Sci. U S A 102: 16119-16120. doi: 10.1073/pnas.0505858102 Wolda, H. 1978. Seasonal fluctuations in rainfall, food and abundance of tropical insects. J. Anim. Ecol. 47: 369-381. Wolda, H. 1988. Insect seasonality: Why? Ann. Rev. Ecol. Syst. 19: 1-18. Wu, G. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37: 1-17. Yang, R.-L., and H. F. Li. 2012. Taxonomy and identification of the five common termite species in Taiwan. Formosan Entomol. 32: 169-198.
摘要: 養菌白蟻 (fungus-growing termite) 包含蜚蠊目 (Blattodea) 白蟻科 (Termitidae) 大白蟻亞科 (Macrotermitinae) 下所有的物種,具有建造菌圃 (fungus garden)、培養Termitomyces spp.真菌為食的行為,養菌白蟻廣布於古北區、衣索比亞區及東洋區,為熱帶及亞熱帶森林中主要的分解者,同時也是重要的農業害蟲。我的論文是以台灣的一種養菌白蟻,台灣土白蟻 (Odontotermes formosanus (Shiraki)) 為材料,研究養菌白蟻的族群建立機制 (第一章) 、覓食物候 (第二章) 及營養生態學 (第三章)。論文的最後 (第四章),我統整目前養菌白蟻餌劑防治所遭遇的困難、並以我的研究結果推測其原因、作為總結。 養菌白蟻的族群建立機制 養菌白蟻在群體建立 (colony establishment) 的階段,必須搜尋築巢位置、挖掘土壤以建造蟻巢、且在建造菌圃前無法獲得營養,因此在群體建立的階段有較高死亡率。野外的養菌白蟻常以多雌性 (pleometrosis) 之方式建立群體,較多的繁殖型個體可能增加其適存度,但未被驗證。為了驗證較多的繁殖型個體是否在族群建立階段具有優勢,本研究將台灣土白蟻的雌雄繁殖型配對,以1-4對不同的配對數建立初始群體,一共建立了647個群體,並量化其搜尋築巢位置及挖掘蟻巢的效率、群體存活率及蟻巢內每個個體的存活率、以及量化每個群體的繁殖力。研究結果顯示,台灣土白蟻的繁殖型會在搜尋築巢位置時,加入正在挖掘蟻巢的群體,降低其搜尋築巢地點的時間。當群體的繁殖型數量增加時,挖掘的蟻巢深度及空間亦增加,但每個繁殖型個體所獲得的空間會減少。分析繁殖型數量對生存率及族群成長的影響,發現1對的群體較易因損失單一的個體而死亡、而個體死亡率在群體具有3對繁殖型時顯著增加,繁殖力隨繁殖型數量增加。檢視屍體上觸角及足損失的頻率,發現其與繁殖型數量呈正相關,推測過多的繁殖型增加個體間的攻擊性。研究結果支持2對繁殖型的新群體在生存率及族群成長上較有優勢。 養菌白蟻的營養生態學 養菌白蟻的覓食行為被認為具季節性,且可能與氣候因子及天敵的發生頻率有關。為了驗證這些假說,我自2013年開始,每月監測484根木樁上台灣土白蟻的發生率、取食量、及覓食群體大小,並以路徑分析 (path analysis) 檢測氣候因子、螞蟻的發生頻率及兩者的交互作用對台灣土白蟻覓食活動之影響 (第二章)。結果顯示,溫度及雨量為影響台灣土白蟻覓食季節性的主要因子。台灣土白蟻在較濕熱的季節會佔據較少的木樁,該季節的螞蟻的發生頻率亦較高,但路徑分析顯示白蟻與螞蟻的發生頻率並無直接關聯,而是各自反應氣候因子。由於台灣土白蟻每個月捨棄大部分佔據的木樁、並尋找新的木樁,推測其具有'吃即跑' (eat-and-run) 之覓食策略。 養菌白蟻透過建造菌圃培養真菌的過程,將採集到的植物組織轉換為真菌孢子球 (fungal nodule) 與成熟菌圃 (aged fungus garden) 兩種食物,藉此獲得營養。為了瞭解真菌轉換是否增加食物對白蟻的營養價值,本研究分析了三個地點台灣土白蟻體內、孢子球、及其菌圃在發酵前與發酵後的α-氨基酸及脂肪酸之組成。研究結果顯示,各地的新鮮菌圃營養組成均不相同、而成熟菌圃及孢子球營養組成相似,菌圃發酵會將營養的比例均質化、轉換為與白蟻體內營養相似的比例,推測白蟻藉由菌圃發酵生產均質且均衡的營養,有助於適應其多樣的食物組成。另外,比較孢子球與菌圃上的胺基酸組成,發現菌圃中無法偵測到色胺酸、其出現於孢子球中。由於色胺酸為必需胺基酸,推測真菌可能透過減少菌圃內的色胺酸濃度、或增加孢子球內的色胺酸濃度,促進白蟻傳遞其孢子。 養菌白蟻餌劑防治困難之文獻回顧及論文總結 目前的白蟻餌劑是針對取食木建構物及樹木的地下白蟻 (Rhinotermitidae) 所設計。白蟻餌劑通常以幾丁質合成抑制劑為有效成分、並以纖維素材料作為介質。餌劑的施作方式是在白蟻覓食的地點設置監測餌站,餌站內包含木料及餌劑供白蟻取食。在熱帶及亞熱帶地區使用白蟻餌劑時,除了地下白蟻外、養菌白蟻也會取食餌劑,目前白蟻餌劑被認為無法有效地防治養菌白蟻,且其原因不明。本研究統整過去的文獻,發現幾丁質合成抑制劑能在養菌白蟻的不同階級之間傳播、會使幼蟲死亡率增加、且對群體大小有負面影響,推測幾丁質合成抑制劑並非防治無效之原因。養菌白蟻會分別搜尋纖維素介質及蛋白質介質的材料,而目前的白蟻餌劑皆是以纖維素為介質,應難以符合養菌白蟻的營養需求。此外,由於養菌白蟻具有 '吃即跑' 的覓食策略、每個月捨棄70-90% 其佔據的食物資源,監測站亦難以持續誘捕白蟻取食。根據以上結果,推測白蟻餌劑在營養上的不平衡及現今的餌站監測方式為防治無效之原因,若能以監測區域內白蟻活動力的方式評估餌劑效力、並增加餌劑中蛋白質的比例,可能改進白蟻餌劑對養菌白蟻的防治效果。
Fungus-growing termites represent all species under the Order Blattodea, Family Termitidae, and subfamily Macrotermitinae, which construct fungus gardens, and cultivate the symbiont fungus Termitomyces spp. as food. Fungus-growing termite widely distributed in Palearctic region, Ethiopian region, and Oriental region, is a major decomposer in tropical and subtropical forests, and also an agriculture pest. In this thesis, I majorly studied the colony establishment mechanisms (Chapter 1), foraging phenology (Chapter 2), and nutritional ecology (Chapter 3) of a single species of fungus-growing termites, Odontotermes formosanus (Shiraki). In the overall conclusion (Chapter 4), I summarized the current challenges on baiting of fungus-growing termites, and proposed solutions, based on my own researches. Colony establishment of fungus-growing termites Fungus-growing termites encounter multiple stresses in colony-founding stage, such as the searching of nesting site, excavation of nest, no supply of nutrition before establishment of fungus gardens. Only few of the incipient colonies survived in colony-founding stage. In field, fungus-growing termites were commonly observed founding a colony by pleometrosis, which is hypothesized to increase the fitness. To test the impact of pleometrosis on colony-founding success, I established a total of 647 colony-founding groups with 1-4 pairs of termite alates of O. formosanus in laboratory, and observed their excavation behavior, recorded the survival rates and counted number of each caste. I found that alates of O. formosanus decreased the time of searching nesting site and increased the depth and space of nest by joining the groups that have started excavation. By analyzing the impact of pair number on survival rate and colony growth, I found that pair number and colony growth rate were positively correlated, one-pair groups are more likely to fail with the mortality of one single individual, and the individual mortality significantly increased in three-pair groups. I examined the corpses of alates, and found that the occurrence of broken body parts was correlated with pair number, supported aggression increased with pair number. Overall, two-pair groups are advantageous on colony survival and growth. Nutritional ecology of fungus-growing termites Foraging behavior of fungus-growing termites was hypothesized to be seasonal, and correlated with climatic factors and occurrence of natural enemy. To test these hypotheses, I started to monitor the monthly occurrence, consumption, foraging population size of O. formosanus on 484 wood stakes, since 2013 (Chapter 2). By using path analysis, I found that temperature and rainfall were the major factors affected foraging activity of O. formosanus. O. formosanus occupied less number of wood stakes in hot-wet seasons, which were generally high in ant occurrence. The result of path analysis also showed that termite activity and ant occurrence contrast responded to climatic factors. We suggest O. formosanus performed eat-and-run foraging strategy, since they leaved most of the wood stakes occupied and forage new wood stakes monthly. Fungus-growing termite transform plant nutrition into two fungal products as food, namely fungal nodule and aged fungus garden. To understand the nutritive values of fungal nodule and aged fungus garden to termites, I analyzed the compositions of α-amino acids and fatty acids in termite tissue, fungal nodule, and fresh and aged fungus gardens in three localities. The results showed nutritional composition in fresh fungus garden was different among localities, and that of aged fungus garden or fungal nodules were similar among localities. Fungal transformation homogenized and transformed the nutritional composition, and the nutritional composition was similar to that of termites, which may benefit termites on adapting the variation of diet nutrition. In addition, an essential amino acid, tryptophan was present only in fungal spores. I hypothesized that the symbiont fungus forced termites to transfer fungal spores by decreasing the concentration of tryptophan in fungus garden or increasing the concentration of tryptophan in fungal nodules. Overall conclusion with special reference to challenges on baiting of fungus-growing termites in the light of their biology Termite bait is designed to control the subterranean termites (Rhinotermitidae) which attack wood structures and trees. Modern termite baits majorly constitute chitin synthesis inhibitor (CSI) as active ingredient and a cellulose-based matrix. Application of termite bait requires to install monitoring stations at the foraging sites of termites, which contains pieces of wood to recruit termites or the CSI baits to control termites. In tropical and subtropical areas, termite baits were consumed by not only subterranean termites, but also by fungus-growing termites (Termitidae: Macrotermitinae). Termite baits were reported being inefficient to suppress the colony of fungus-growing termites, and the cause is unknown. Previous studies confirmed that CSIs were transferred between castes, lethal to larvae, and significantly reduced colony size of fungus-growing termites. I suggest CSI is not the cause of bait inefficacy. Different to subterranean termites, fungus-growing termites forage for both cellulose-based and protein-based diets. Modern termite baits are all cellulose-based, not likely to satisfy the nutritional requirement of fungus-growing termites. Fungus-growing termites performed an eat-and-run foraging strategy by leaving 70–90% of the pieces of wood they occupied per month, in consequence, monitoring stations are not likely to recruit the termites continuously. I suggest the imbalanced bait matrix and the termite monitoring method are the causes of bait inefficacy.
URI: http://hdl.handle.net/11455/97887
文章公開時間: 2020-11-02
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.