Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97890
標題: 鏈黴菌BT-05對小菜蛾取食抑制與殺蟲效力之評估
Evaluation Streptomyces sp. BT-05 on feeding inhibition and lethal efficacy of diamondback moth, Plutella xylostella L.
作者: 楊卓翰
Cho-Han Yang
關鍵字: 生物性殺蟲藥劑
鏈黴菌
小菜蛾
bio-pesticide
Streptomyces
Plutella xylostella
引用: 王一雄。1997。土壤環境污染與農藥。明文書局。pp 333-453。 石信德、黃振文。2005。保護植物的重要菌源-鏈黴菌。科學發展。 391: 22-27。 呂鳳鳴、李錫山。1984。小菜蛾生活史觀察。中華農業研究。33: 424-430。 李錫山。1989。十字花科害蟲-台灣農家全書。行政院農委會。pp 184。 陳文雄、陳昇寬、張煥英。1995。台灣農家要覽-農作篇 (三)。葉瑩(ed)。行政院農業委員會。pp 378。 費雯綺、王喻其。2007。植物保護手冊─蔬菜篇,93-102。 Aharonowitz Y, Demain AL. 1978. Catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob. Agents Chemother 14: 159-164. Arasu MV, Al-Dhabi NA, Saritha V, Duraipandiyan V, Muthukumar C, Kim SJ. 2013. Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyce spp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol 13: 105. APRD. 2012. Arthropod Pesticide Resistance Database. East Lansing: Michigan State Univ. http://www.pesticideresistance.com/index.php5a. Atumurirava F, Furlong MJ. 2011. Diamondback moth resistance to commonly used insecticides in Fiji. In: Srinivasan R, Shelton AM, Collins NH (eds). Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests. March 21~25, 2011; Nakhon Pathom, Thailand: AVRDC-The World Vegetable Center. pp 216-221. Bream AS, Ghazal SA, El-Aziz ZKA, Ibrahim SY. 2001. Insecticidal activity of selected Actinomycetes strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66: 503-512. Castillo MA, Moya P, Hernández E, Primo-Yúfera E. 2000. Susceptibility of Ceratitis capitata Wiedemann (Diptera: tephritidae) to entomopathogenic fungi and their extracts. BioControl 19: 274-282. Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H. 2010. The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34: 171-198. Challis GL, Hopwood DA. 2003. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Pro Nat Acad Sci U.S.A. 100: 14555-14561. Chen KC, Lin YH, Tsai CM, Hsieh CH, Houng JY. 2002. Optimization of glycerol feeding for clavulanic acid production by Streptomyces clavuligerus with glycerol feeding. Biotechnol Lett 24: 455-458. Chen Y, Evans J, Feldlaufer M. 2006. Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. J Invertebr Pathol 92: 152-159. Clercq P, Mason PG, Babendreier D. 2011. Benefits and risks of exotic biological control agents. BioControl 56: 681-698. Conn VM, Walker AR, Franco CM. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21: 208-218. Coombs JT, Franco CMM. 2003. Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69: 4260-4262. Demain AL, Sanchez S. 2009. Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62: 5-16. Dhanasekaran D, Sakthi V, Thajuddin N, Panneerselvam A. 2010. Preliminary evaluation of Anopheles mosquito larvicidal efficacy of mangrove actinobacteria. Int J Appl Biol Pharm Technol 1: 374-381. FAOSTAT. 2012. Production statistics. Rome: FAO. hattp://faostat.fao.org/site/567/default.aspx#ancor. Elson SW, Oliver RS. 1978. Studies on the biosynthesis of clavulanic acid. I. Incorporation of 13C-labelled precursors. J Antibiot 31: 586-592. Fries I, Camazine S. 2001. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 32: 199-214. Gadelhak GG, El-Tarabily KA, Al-Kaabi FK. 2005. Insect control using chitinolytic soil actinomycetes as biocontrol agents. Int J Agri Biol 7: 627-633. Harper JD. 1987. Applied epizootiology: Microbial control of insects. James RF, Yoshinori T (eds). pp 473-496. In: Epizootiology of Insect Diseases. Wiley. New York. Hiltunen LH, Linfield CA, White JG. 1995. The potential for the biological control of basal rot of Narcissus by Streptomyces sp. Crop Protect. 14: 539-542. Hiltunen LH, Ojanpera T, Kortema H, Richter E, Lehtonen MJ, Valkonen JPT. 2009. Interactions and biocontrol of pathogenic Streptomyces strains co-occurring in potato scab lesions. J Appl Microbol 106: 199-212. Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG. 1989. Dispersed growth of Streptomyces in liquid culture. Appl Microbial Biotechnol 31: 272-277. Huang J, Wu WJ. 2003. Advance of studies on insecticide resistance to diamondback moth (Plutella xylostella L.). J Guizhou Univ (Nat Sci) 20: 97-104. Hussain AA, Mostafa SA, Ghazal SA, Ibrahim SY. 2002. Studies on antifungal antibiotic and bioinsecticidal activities of some Actinomycete isolates. Afr J Mycol Biotechnol 10: 63-80. Iznaga Y, Lemus M, Gonzalez L, Garmendia L, Nadal L, Vallin C. 2004. Antifungal activity of Actinomycetes from Cuban soils. Phytother Res 18: 494-496. Kennedy GG, Sutton TB. 2000. Emerging Technologies for Integrated Pest Management: Concepts, Research, and Implementation. APS Press, U.S.A. pp 526. Kirk S, Avignone-Rossa CA, Bushell ME. 2000. Growth limiting substrate affects antibiotic production and associated metabolic flues in Streptomyces clavuligerus. Biotechnol Lett 22: 1803-1809. Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G. 2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48: 772-786. Lai WR. 2003. Development of Streptomyces griseobrunneus S3 as a bioagent for the control of plant fungal diseases. Master Thesis, National Chung Hsing University pp. 114. Lin L, Ge HM, Yan T, Qin YH, Tan RX. 2012. Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236: 1849-1861. Mansour M, Feicht EA, Behechti A, Scheunert I. 1997. Experimental approaches to studying the photostability of selected pesticides in water and soil. Chemosphere 35: 39-50. Mayer AF, Deckwer WD. 1996. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Appl Microbiol Biotechnol 45: 41-46. Miyadoh S. 1997. Atlas of Actinomycetes. The Society for Actinomycetes. Asakura publishing Co., Ltd. Japan. pp 223. Montesinos E. 2003. Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6: 245-252. Oka Y, Kohai H, Bar-Eyal M, Mor M, Sharon E, Chet I, Spiegel Y. 2000. New strategies for the control of plant-parasitic nematodes. Pest Manag Sci 56: 983-988. Omura S. 2008. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents 31: 91-98. Oskay M. 2009. Antifungal and antibacterial compounds from Streptomyces strains. Afr J Biotechnol 8: 3007-3017. Osman G, Mostafa S, Mohamed SH. 2007. Antagonistic and insecticidal activities of some Streptomyces isolates. Pak J Biotechnol 4: 65-71. Perrings C, Dalmazzone S, Williamson MH. 2000. The economics of biological invasions. pp 56-69. In: Mooney HA, Mack R, McNeely JA, Neville LE, Schei PJ, Waage JK (eds). Invase Alien Species: A New Synthesis. Edward Elgar. Cheltenham. Prapagdee B, Kuekulvong C, Mongkolsuk S. 2008. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4: 330-337. Procópio RE, Silva IR, Martins MK, Azevedo JL, Araújo JM. 2012. Antibiotics produced by Streptomyces. Braz J Infect Dis 16: 466-471. Romero J, Liras P, Martin JF. 1984. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol 20: 318-325. Sabaratnum S, Traquair JA. 2002. Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23: 245-253. Saburo T, Nobutaka T, Satoshi M, Rinpei M, Saburo S, Junsaku N. 1963. Isolation and physiological activities of piericidin a, a natural insecticide produced by Streptomyces. Agr Bioi Chern 8: 576-582. Sanchez L, Brana AF. 1996. Cell density influences antibiotic biosynthesis in Streplomyces clavuligerus. Microbiology 142: 1209-1220. Sánchez ME, Estrada IB, Martínez O, J Martín-Villacorta A, Aller A, Morán A. 2004. Influence of the application of sewage sludge on the degradation of pesticides in the soil. Chemosphere 57: 673-679. Sanchez S, Demain AL. 2002. Metabolic regulation of fermentation processes. Enzyme Microb Technol 31: 895-906. Sayyed AH, Gatsi R, Ibiza-Palacios MS, Escriche B, Wright DJ, Crickmore N. 2005b. Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac. Appl Environ Microbiol 71: 6863-6869. Schmeltz I. 1971. Nicotine and other alkaloids. pp 99-136. Jacobson M, Crosby DG (eds). Naturally Occurring Insecticides. Marcel Dekker, New York. Shi YF. 2000. Advances of insecticidal microorganisms. Plant Prot 26: 32-34. Shirling EB, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313-340. Saito T. 1984. Effect of pesticides on conidial germination and hyphal growth of the entomopathogenic fungus Beauveria bassiana. J Appl Zool 28: 87-89. Stowell LJ. 1993. Factors influencing acceptance and development of biopesticides. pp 249-260. In: Kim L (ed). Advanced Engineered Pesticides. Marcel Dekker Inc., New York. Sundarapandian S, Sundara MD, Tholkappian P, Balasubramanian V. 2002. Mosquitocidal properties of indigenous fungi and Actinomycetes against Culex quinquefasciatus Say. J Biol Control 16: 89-91. Tabashnik BE. 1992. Evaluation of synergism among Bacillus thuringiensis toxins. Appl Environ Microbiol 58: 3343-3346. Tabashnik BE, Cushing NL. 1987. Leaf residues vs. topical bioassays for assessing resistance in the diamondback moth (Lepidoptera: Plutellidae). FAO Plant Prot. Bull. 35: 11-14. Talekar NS, Shelton AM. 1993. Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38: 275-301. Ware G. 2000. Reviews of Environmental Contamination and Toxicology. Springer-Verlag, New York. pp 70-207. Wang P, Zhao JZ, Rodrigo-Simon A, Kain W, Janmaat AF, Shelton AM, Ferre J, Myers J. 2007. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of cabbage looper, Trichoplusia ni. Appl Environ Microbiol 73: 1199-1207. Williams ST, Goodfellow M, Alderson G. 1989. Genus Streptomyces. pp 2452-2492. In: Williams ST, Sharpe ME, Holt JG (eds). Bergey's Manual of Systematic Bacteriology Vol. 4. Williams & Wilkins. Baltimore. Wright MG, Hoffmann MP, Kuhar TP, Gardner J, Pitcher SA. 2005. Evaluating risks of biological control introductions: A probabilistic risk-assessment approach. Biol Control 35: 338-347. Yu J, Lill Q, Liu X, Sun Q, Yan J, Qi X, Fan S. 2008. Effect of liquid culture requirements on antifungal antibiotic production by Streptomyces rimosus MY02. Bioresour Technol 99: 2087-2091. Yuan WM, Crawford DL. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61: 3119-3128. Zalucki MP, Furlong MJ. 2011. Predicting outbreaks of a major migratory pest: an analysis of diamondback moth distribution and abundance revisited. In: Srinivasan R, Shelton AM, Collins HL (eds). Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests. March 21~25, 2011; Nakhon Pathom, Thailand: AVRDC-TheWorld Vegetable Center. pp 8-14. Zalucki MP, Shabbir A, Silva R, Adamson D, Liu SS, Furlong MJ. 2012. Estimating the economic cost of one of the world's major insect pests: Plutella xylostella: Just how long is a piece of string? J Econ Entomol 105: 1115-1129. Zhou XM, Bai LY, Huang XY, Wu QJ. 2007. Advance of studies on insecticide resistance of diamondback moth (Plutella xylostella L.) to abamectin. Acta Agric Jiangxi 19: 48-50.
摘要: 微生物殺蟲劑 (microbial insecticide) 是一種生物性殺蟲藥劑,主要是利用細菌、真菌或病毒等微生物或其產生的代謝物質所開發成。微生物性殺蟲藥劑可被運用於現代整合性害蟲管理系統 (integrated pest management, IPM),以降低使用化學殺蟲劑對於環境與人體健康所造成的衝擊。本研究主要係與百泰生物科技股份有限公司共同合作,自其種源庫中,篩得一株對小菜蛾 (Plutella xylostella) 幼蟲具取食抑制與殺蟲效果之鏈黴菌 (Streptomyces sp.;代號BT-05)。浸葉試驗結果可以得知至少以106顆BT-05之孢子於Mannitol Soya Flour (MS or SFM) 培養液發酵五日之發酵液具最佳活性,取食抑制與殺蟲效果均可達70%或以上,且冷藏於4℃下四周後活性依然可達80%。經離心之BT-05發酵液之上清液對小菜蛾幼蟲並無影響,而其菌體沉澱物回溶於RO水或MS培養液對幼蟲均有活性,顯示其活性物質應是來自於菌體內部;此外,發酵液經由4倍之稀釋後即失去活性。另外將BT-05靜置於溫度54℃下2週,結果BT-05在1週後即喪失活性。檢測BT-05發酵液穩定性之試驗,結果顯示以80℃熱處理10分鐘後仍具有活性,但在100℃下處理10分鐘後活性顯著下降,且經由滅菌處理後活性喪失;此活性物質在pH值3~11之環境下24小時,仍具有活性;並且在UV-B光能下照射12小時也仍對小菜蛾幼蟲具活性。最後,網室內植株試驗的結果呈現,高麗菜植株在經過BT-05處理後具有良好的防治效果。綜合上述結果顯示,BT-05具有開發潛力,未來可作為新穎性生物農藥,以防止小菜蛾對十字花科作物之危害。
Microbial insecticides, a type of biopesticides, are mainly made from microorganisms and/or their metabolites. Combining microbial insecticides in integrated pest management (IPM) could reduce impacts of chemical pesticides on the environment and human health. In the present study, we collaborated with the Biontech Biotechnology Co. Ltd (Miaoli County, Taiwan) and focused on one Streptomyces sp., coded BT-05, which it showed the deterrent effect on Plutella xylostella. On results of the leaf-dip tests, the fermentation broth of Streptomyces sp. BT-05 (106 spores, fermenting for 5 days) in Mannitol Soya Flour (MS or SFM) medium showed still had over 70% feeding inhibition rate and mortality against P. xylostella larvae. Also, BT-05 culture in MS medium stored at 4°C still had 80% feeding inhibition rate and mortality after 4 weeks compared to the cultures fermented with other medium. The supernatant of the BT-05 fermented broth had no notable effect against P. xylostella larvae, yet the RO water- or MS-resuspended pellets showed the effect, indicating that the active substances of feeding inhibition and lethal efficacy may originate from the inside of BT-05 cells. However, the RO water-resuspended pellet lost the activity after 4 fold dilution. The test on the active substance stability of BT-05 culture resulted that feeding inhibition and lethal efficacy were remained even at temperature 80°C for 10 minutes, and slightly decrease on the 100°C. However, the activity totally lost after sterilization by autoclave. Moreover, BT-05 culture almost wholly lost activity at 54°C for 1 week. Further, the activity of BT-05 still existed after treated in pH 3~11 for 24 h. There had no significant effect on feeding inhibition and lethal efficacy of BT-05 UV-treatment (UV-B) for 12 hours. The results of the plant tests showed that spraying BT-05 had good protective effect against diamondback moth larva feeding on the cabbage plants. In conclusion, the above results revealed that Streptomyces sp. BT-05 has a considerable potential to be developed as a novel biopesticide to prevent P. xylostella damage on the cruciferous crops.
URI: http://hdl.handle.net/11455/97890
文章公開時間: 10000-01-01
Appears in Collections:昆蟲學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.