Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97923
標題: CrRu-C以及MgTiTaON多層膜對於FePt微結構與磁特性之探討
Magnetic properties and microstructure of FePt films with CrRu-C and MgTiTaON multilayer
作者: 吳昱霆
Yu-Ting Wu
關鍵字: 多層膜
L10-FePt
MgTiTaON
CrRu-C
multilayer
L10-FePt
MgTiTaON
CrRu-C
引用: [1] E. D. Daniel, C. D. Mee, M. H. Clark, 'Magnetic Recording: The First 100 Years, ' (New York: IEEE Press), (1998). [2] A.Moser et al., 'Magnetic recording: advancing into the future,' J. Phys. D. Appl. Phys., vol. 35, no. 19, pp. R157–R167, 2002. [3] R.Wood, 'Future hard disk drive systems,' J. Magn. Magn. Mater., vol. 321, no. 6, pp. 555–561, 2009. [4] B. D.Terris andT.Thomson, 'Nanofabricated and self-assembled magnetic structures as data storage media,' J. Phys. D. Appl. Phys., vol. 38, no. 12, pp. R199–R222, 2005. [5] M.Alex, A.Tselikov, T.McDaniel, N.Deeman, T.Valet, andD.Chen, 'Characteristics of thermally assisted magnetic recording,' IEEE Trans. Magn., vol. 37, no. 4 I, pp. 1244–1249, 2001. [6] S. H. Charap, P. L. Lu, & Y. He, 'Thermal stability of recorded information at high densities.' Magnetics, IEEE Transactions on, vol. 33 , no. 1, p.978-983 (1997) [7] S.Iwasaki andK.Takemura, 'An analysis for the circular mode of magnetization in short wavelength recording,' IEEE Trans. Magn., vol. 11, no. 5, pp. 1173–1175, 1975. [8] 引用資料來源網址http://www.hgst.com/. [9] D. Litvinov, M. H. Kryder, & S. Khizroev, 'Recording physics of perpendicular media: soft underlayers,' Journal of Magnetism and Magnetic Materials,232, p.84-90 (2001) [10] D.Weller, O.Mosendz, G.Parker, S.Pisana, andT. S.Santos, 'L10 FePtX-Y media for heat-assisted magnetic recording,' Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 7, pp. 1245–1260, 2013. [11] Y.Shiroishi et al., 'Future options for HDD storage,' IEEE Trans. Magn., vol. 45, no. 10, pp. 3816–3822, 2009. [12] 引用資料來源網址'http://www.seagate.com. '. [13] 引用資料來源網'http://www.seagate.com/tw/zh/about-seagate/seagate-history/.' [14] T.Rausch, E.Gage, andJ.Dykes, 'Heat assisted magnetic recording,' Springer Proc. Phys., vol. 159, no. 11, pp. 200–202, 2015. [15] Jai Lin Tsai et al., 'Magnetic Properties and Microstructure of FePt Films With MgTiON Intermediate Layer,' IEEE Trans. Magn., Vol. 51, no. 11, 2015. [16] Kazuhiro Hono et al., 'L10 FePt–C Nanogranular Perpendicular Anisotropy Films with Narrow Size Distribution,' Applied Physics Express., Vol. 1, , 2010. [17] D.Goll andT.Bublat, 'Large-area hard magnetic L10-FePt and composite L1 0-FePt based nanopatterns,' Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 7, pp. 1261–1271, 2013. [18] U.Kawald, W.Zemke, H.Bach, J.Pelzl, andG. A.Saunders, 'Elastic constants and martensitic phase transitions in FePt and FeNiPt invar alloys,' Phys. B Phys. Condens. Matter, vol. 161, no. 1–3, pp. 72–74, 1989. [19] B. E. Warren, 'X-ray Diffraction', Dover, New York, p. 227, (1990). [20] J. S.Chen, B. C.Lim, andT. J.Zhou, 'Effect of ultrahigh vacuum on ordering temperature, crystallographic and magnetic properties of L1(0) FePt(001) film on a CrRu underlayer,' J. Vac. Sci. Technol. A, vol. 23, no. 1, pp. 184–189, 2005. [21] En Yang, David E. Laughlin, and Jian-Gang Zhu,' Correction of Order Parameter Calculations for FePt Perpendicular Thin Films,' IEEE transactions on magnetics, vol. 48, no. 1, p.7-12 (2012) . [22] Y. K.Takahashi, K.Hono, T.Shima, andK.Takanashi, 'Microstructure and magnetic properties of FePt thin films epitaxially grown on MgO (0 0 1) substrates,' J. Magn. Magn. Mater., vol. 267, no. 2, pp. 248–255, 2003. [23] B. S. D. C. S.Varaprasad, Y. K.Takahashi, A.Ajan, andK.Hono, 'Electrically conductive (Mg0.2Ti0.8)O underlayer to grow FePt-based perpendicular recording media on glass substrates,' J. Appl. Phys., vol. 113, no. 20, pp. 1–6, 2013. [24] Y.Xu, J. S.Chen, andJ. P.Wang, 'In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100-xRux underlayer at low substrate temperature,' Appl. Phys. Lett., vol. 80, no. 18, pp. 3325–3327, 2002. [25] T.J.Zhou, K. M. Cher, J. F. Hu, B. C. Lim, P. W. Lwin, J. Z. Shi'Enhanced Exchange Coupling in TiO2-Doped FePt-C Nanocomposite Thin Films Induced by Surfactant Mediated Growth,' IEEE Trans. Magn., vol. 47(10), (2011) [26] 金重勳、李景明、張慶瑞,'磁性技術手冊',中華民國磁性技術協會,(2002). [27] C.Law, '杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,'磁性基本特性及磁性材料應用',國立台灣大學化學系,' no. 1. [28] Soshin Chikazumi 著,張煦、李學養合譯,'磁性物理學.' . [29] B. D. Cullity, 'Introduction to magnetic materials, ' Ch7, Wesley (1972). [30] D. E.Gray, 'American Institute of Physics Handbook,' Am. Inst. Phys. Handb., vol. 389, 1957. [31] Berkeley; andE. F.King, 'M. J. Clerk,'Atreatise on Electicity and magnetism,' Articles 437 and 438, vol.2, 1006 (1954),' Oxford Univ., vol. XXX, p. 352, 1859. [32] 金重勳、李景明、張慶瑞,'磁性技術手冊',中華民國磁性技術協會,P25,(2002). [33] P. B. Barna, M. Adamik, 'Growth mechanisms of polycrystalline thin films, ' Science and technology of thin films, pp.4 (1995). [34] Milton Ohring 'Materials Science of Thin Films,' Ch 7 , p360 (2002). [35] J. S. Chen, B. C. Lim, and T. J. Zhou' Effect of ultrahigh vacuum on ordering temperature, crystallographic andmagnetic properties of L10 FePt (001) film on a CrRu underlayer,' J. Vac. Sci. Technol. A 23, p.184 (2005). [36] Y. C.Feng, D. E.Laughlin, andD. N.Lambeth, 'Formation of crystallographic texture in rf sputter-deposited Cr thin films,' J. Appl. Phys., vol. 76, no. 11, pp. 7311–7316, 1994. [37] Y.Xu, J. S.Chen, andJ. P.Wang, 'In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100-xRux underlayer at low substrate temperature,' Appl. Phys. Lett., vol. 80, no. 18, pp. 3325–3327, 2002. [38] H.Li, K.Dong, Y.Peng, G.Ju, G. M.Chow, andJ. S.Chen, 'Microstructures and magnetic properties of FePt thin films on TiON intermediate layer,' IEEE Trans. Magn., vol. 50, no. 3, pp. 89–95, 2014. [39] B. S. D. Ch. S. Varaprasad, Bing Zhou, Tong Mo, David E. Laughlin, and Jian-Gang Zhu, 'MgO-C interlayer for grain size control in FePt-C media for heat assisted magnetic recording,' AIP Advances, vol.7, no5, 2016. [40] 引用資料來源網址http://www.seagate.com/tw/zh/. [41] 引用資料來源網址http://web1.knvs.tp.edu.tw/AFM/ch4.htm. [42] 取自'國立中興大學材料系'貴儀 [43] C.Rontgen, H.Bragg, L.Bragg, andM.Laue,引用資料來源網址'http://www.lcis.com.tw/paper_store/paper_store/CH3-2015517201832562.pdf,' pp. 17–35, 1913. [44] 圖片來源'國立中正大學物理系張文成老師實驗室.' [45] 圖片來源'國立交通大學電物系貴重儀器.' [46] B. D. Cullity, C. D. Graham, 'Introduction to Magnetic Materials, ' second edition, 2.11.2 , pp.68 (2009). [47] 圖片來源http://www.rikendenshi.co.jp/bh.files/VSMTOP.html. [48] 引用資料來源網址'http://teachlab.phys.ncku.edu.tw/media/course_pdf/SQUID101.pdf,' pp. 1–10, 1973. [49] 圖片來源'http://www.wikiwand.com/en/SQUID'. [50] 取自'國立中興大學永續能源與奈米科技研究中心'核心實驗室貴儀 [51] Ian M. Watt'The Principles and Practice of Electron Microscopy,' vol 2 , p. 52(2012). [52] L.Tang and D.E Laughlin,'Electron Diffraction Patterns of Fibrous and Lamllar textured Polycrystalline Thin Films . II. Application,' Journal of Applied Crystallography. 29, p.411-418 (1996). [53] 取自'國立中興大學永續能源與奈米科技研究中心'核心實驗室貴儀 [54] 取自'國立中興大學永續能源與奈米科技研究中心'核心實驗室貴儀 [55] Milton Ohring 'Materials Science of Thin Films,' Ch 10, p.594-596 (2002) [56] 取自'國立中興大學永續能源與奈米科技研究中心'核心實驗室貴儀 [57] 引用資料來源網址 'http://lnf-wiki.eecs.umich.edu/wiki/Atomic_force_microscopy.' [58] J P Chu, T Mahalingam1 and S F Wang, 'The structure and magnetic properties of sputtered FePtM (M = Ta, Cr) thin films,' Journal of Condensed Matter ,Vol.16,page 4,2004
摘要: 本實驗主要分兩大部分,而第一部分為利用單層中間層CrRu-C以及CrRu-C多層膜對於FePt的變化進行比較與探討。第二部分則改變MgTiTaON多層膜膜厚對於FePt的變化進行比較與探討。 首先我們先使用單層CrRu-C作為中間層。當厚度為0.5 nm時,FePt垂直膜面矯頑力下降至8.7 kOe,且水平矯頑力上升至8.6 kOe。造成此現象是因為Cr擴散至FePt晶界造成結構的破壞。因此我們將CrRu-C作成多層膜時,雖然FePt垂直膜面矯頑力下降至8.6 kOe,但水平矯頑力有下降的趨勢,添加少量的C有助於FePt之分隔。另外由TEM橫截面圖中可以發現,在未加入任何分隔材料至FePt膜層的情況下薄膜較為濕潤,接觸角為41o,然而加入CrRu-C穿插在FePt形成多層膜後,接觸角變為56o。另外隨著CrRu-C厚度增加晶粒尺寸縮小,原因是Cr有助於晶粒細化。 第二部分實驗中使用MgTiTaON穿插在FePt形成多層膜,在MgTiTaON厚度為1.5 nm時,垂直矯頑力達到9.1kOe。而垂直矯頑力下降的原因是多餘的O擴散至FePt層,造成序化的破壞。另外由TEM橫截面圖中可以發現,MgTiTaON厚度增加至1.5 nm,可以觀察到FePt分隔較為明顯,且晶粒接近柱狀的生長,接觸角接近90o,這說明了晶格間的不匹配所生成的應力確實有效的將FePt分隔。
This study mostly consists of two parts. The first part of this study was the discussion of FePt films with single intermediate layer TiCO and multilayer CrRu-C. In the second part, the second part is to change the thickness of MgTiTaON multilayer film and discussion the transformation ofFePt films with multilayer MgTiTaON. First part we used a single layer of CrRu-C as the intermediate layer. When the thinkness of CrRu-C was 0.5 nm, the FePt out of plane coercivity decreased to 8.7 kOe, and the out of plane coercivity increased to 8.6 kOe. The phenomenon was due to Cr diffuses into the FePt grain boundary and caused structural damage. Therefore, we used CrRu-C as multilayer, although the FePt out of plane coercivity decreased to 8.6 kOe, but the in of plane coercivity also tended to decrease. . Added a small amount of C contributed to the separation of FePt. In addition, it could be seen from the TEM cross-section that the thin film is relatively moist without the addition of any separator material to the FePt film, and the contact angle is 41°. However, when CrRu-C is intercalated on the FePt to form a multilayer film, the contact angle became 56°. In addition, as the CrRu-C thickness increased, the grain size decreased due to Cr contribute to grain refinement. In the second part of the experiment, MgTiTaON was used to interpenetrate the FePt to form a multilayer. When the thickness of MgTiTaON was 1.5 nm, the FePt out of plane reached 9.1 kOe, the phenomenon was due to excess O diffuses into the FePt layer, causing sequential failure. From the TEM cross-section, we could see that the thickness of MgTiTaON increases to 1.5 nm, the separation of FePt is more obvious, and the growth of crystal grains is close to columnar. The contact angle is close to 90o. It showed that the mismatch between crystal lattices is generated. The stress is indeed effective in separating FePt.
URI: http://hdl.handle.net/11455/97923
文章公開時間: 2021-08-22
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.