Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97929
標題: 低溫水熱化學電池法於氮化鈦膜上製備鈦酸鍶鋇薄膜之研究
Low-temperature hydrothermal galvanic couple synthesis of barium strontium titanate thin films on TiN/Si substrates
作者: 詹佩諠
Pei-Hsuan Chan
關鍵字: 水熱
化學電池
氮化鈦
鈦酸鍶鋇
hydrothermal
galvanic couple
TiN
BaxSr1-xTiO3(BST)
引用: [1] N. Setter, Electroceramics: looking ahead, J. Eur. Ceram. Soc. 21 (2001) 1279–1293. [2] B. Acikel, P. Hansen, T.R. Taylor, A.S. Nagra, J.S. Speck, R.A. York, Tunable Strontium Titanate thin-films for microwave devices, Integr. Ferroelectr. 39 (2001) 291–298. [3] C. Basceri, S.K.Streiffer, A.I. Kingon, R. Waser, The dielectric response as a func-tion of temperature and film thickness of fibertextured (Ba,Sr)TiO3 thin-films grown by chemical-vapor deposition, J. Appl. Phys. 82 (1997) 2497–2504. [4] J.-H. Joo, J.-M. Seon, Y.-C Jeon, K.-Y. Oh, J.-S. Roh, J.-J. Kim, Improvement of leakage currents of Pt/(Ba, Sr)TiO3/Pt capacitors, Appl. Phys. Lett. 70 (1997) 3053–3055. [5] H.S. Tork, A. Elshabini, F. Barlow, Tunable BaSrTiO3, BaZrTiO3 ferroelectric ca-pacitors embedded inside low temperature cofired ceramics (LTCC). J. Microelec. Electro. Pack. 10 (2013) 95–101. [6] J. Jeon, Effect of SrTiO3 concentration and sintering temperature on microstructure and dielectric constant of Ba1-xSrxTiO3, J. Eur. Ceram. Soc. 24 (2004) 1045–1048. [7] A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu, F. Vasiliu,H.V. Alexandru, C. Berbecaru,G. Stoica, Barium strontium titanate-based perovskite materials for mi-crowave applications, Prog. Solid State Chem. 35 (2007) 513–520. [8] N. Ishizawa, H. Banno, M. Hayashi, S. E. Yoo, and M. Yoshimura, 'Preparation of BaTiO3 and SrTiO3 polycrystalline thin films on flexible polymer film substrate by hydrothermal method,' J. Appl. Phys. 29 (1990) 2467. [9] M.E. Pilleux, C.R. Grahmann, and V.M. Fuenzalida, 'Hydrothermal strontium ti-tanate films on titanium: An XPS and AES depth-profiling study,' J. Am. Ceram. Soc. 77 (1994) 1601. [10] Z. Wu, N. Kumagai and M. Yoshimura, 'Hydrothermal formation and growth of single- and double-layer BaTiO3 and SrTiO3 films on the flexible polymer film sub-strates from sol-gel amorphous titanium oxide films,' Chem. Mater. 12 (2000) 3356. [11] M.A. McCormick, R.K. Roeder, and E.B. Slamovich, 'Processing effects on the composition and dielectric properties of hydrothermally derived BaxSr1-xTiO3 thin films,' J. Mater. Res. 16 (2001) 1200. [12] W.-D.Yang, and K.-M. Hung, 'Optimization of the experimental conditions for the preparation of a thin strontium titanate film by hydrothermal process,' J. Mater. Sci. 37 (2002) 1337. [13] D. Gao, D. Xiao, J. Bi, P. Yu, G. Yu, W. Zhang, and J. Zhu, 'Hydrothermal Syn-theses of Barium Strontium Titanate Thin Films,' Mater. Trans. 44 (2003) 1320. [14] J. Zhao, X. Wang, R. Chen, and L. Li, 'Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates,' Mater. Lett. 59 (2005) 2329. [15] J. Xu, J. Zhai, and X. Yao, 'Growth and Characterization of BaxSr1-xTiO3 Thin Films Derived by A Low-Temperature Process,' Cryst. Growth Des. 6 (2006) 2197. [16] J. Zhao, X. Wang, L. Li, X. Wang, and Y. Li, 'Stoichiometry control and structure evolution in hydrothermally derived (Ba,Sr)TiO3 films,' Ceram. Int. 34 (2008) 1223. [17] R. Z. Hou, A. Wu, and P. M. Vilarinho, 'Low-Temperature Hydrothermal Deposi-tion of (BaxSr1-x)TiO3 Thin Films on Flexible Polymeric Substrates for Embedded Applications,' Chem. Mater. 21 (2009) 1214. [18] Z. Zhou, H. Tang, Y. Linb, and H. A. Sodano, 'Hydrothermal growth of textured BaxSr1-xTiO3 films composed of nanowires,' Nanoscale 5 (2013) 10901. [19] M. Yoshimura, S.-E. Yoo, M. Hayashi, 'Preparation of BaTiO3 Thin Film by Hy-drothermal Electrochemical Method,' Jpn. J. appl. phys., 28 (1989) L2007. [20] M. Hayshi, N. Ishizawa, S.-E. Yoo, and M. Yoshimura, 'Preparation of Barium Ti-tanate thin film on Titanium-deposited glass substrate by hydrother-mal-electrochemical method,' J. Ceram. Soc. Jpn., 98 (1990) 930. [21] S. E. Yoo, M. Hayashi, N. Ishizawa, and M. Yoshimura, 'Preparation of strontium titanate thin film on titanium metal substrate by hydrothermal-electrochemical method,' J. Am. Ceram. Soc. 73 (1990) 2561. [22] R. Bacsa, P. Ravindranathan, and J.P. Dougherty,'Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on tita-nium substrates,' J. Mater. Res., 7 (1992) 423. [23] P. Bendale, S. Venigalla, J. R. Ambrose, E. D. Verink, J. H. Adair, 'Preparation of barium titanate at 55oC by an electrochemical method', J. Am. Ceram. Soc., 76 (1993) 2619. [24] K. Kajiyoshi, K. Tomono, Y. Hamaji, and T. Kasanami, 'Grown of strontium titan-ate thin films of controlled thickness by the hydrothermal-electrochemical method,' J. Am. Ceram. Soc. 77 (1994) 2889. [25] S. Venigalla, P. Bendale, J. H. Adair, 'Low temperature electrochemical synthesis and dielectric characterization of barium titanate films using nonalkali electrolytes', J. Electrochem. Soc., 142 (1995) 2101. [26] R. R. Bacsa, G. Rutsch, J. P. Dougherty, 'Electrochemical synthesis of barium ti-tanate thin films,' J. Mater. Res., 11 (1996) 194. [27] K. Kajiyoshi, Y. Hamaji, K. Tomono, and T. Kasanami, 'Microstructure of stronti-um titanate thin film grown by the hydrothermal-electrochemical method,' J. Am. Ceram. Soc. 79 (1996) 613. [28] K. Kajiyoshi, Y. Sakabe, and M. Yoshimura, 'Electrical Properties of BaTiO3 Thin Film Grown by the Hydrothermal-Electrochemical Method,' Jpn. J. appl. phys., 28 (1989) 1209. [29] W. Suchanek, T. Watanabe, and M. Yoshimura, 'Preparation of BaTiO3 thin films by the hydrothermal-electrochemical method in the flowing solution,' Solid State Ion., 109 (1998) 65. [30] W. L. Suchanek, and M. Yoshimura, 'Preparation of strontium titanate thin films by the hydrothermal–electrochemical method in a solution flow system,' J. Am. Ce-ram. Soc. 81 (1998) 2864. [31] Z. Wu, M. Yoshimura, 'Investigations on procedures of the fabrication of barium titanate ceramic films under hydrothermal-electrochemical conditions,' Solid State Ion., 122 (1999) 161. [32] I. S. Escobar, C. I . Silva, T. Vargas, V. M. Fuenzalida, 'Nucleation and inhibition control during the hydrothermal-electrochemical growth of barium titanate films', J. Am. Cream. Soc., 83 (2000) 2673. [33] K. Kajiyoshi, M. Yoshimura, Y. Hamaji, K. Tomono, and T. Kasanami, 'Growth of (Ba, Sr)TiO3 thin films by the hydrothermal-electrochemical method and effect of oxygen evolution on their microstructure,' J. Mater. Res. 11 (1996) 196. [34] M. Yoshimura, W. L. Suchanek, T. Watanabe, and B. Sakurai, 'In Situ Fabrication of SrTiO3 BaTiO3 Layered Thin Films by Hydrothermal-electrochemical Technique,' J. Eur. Ceram. Soc., 19 (1999) 1353. [35] S. Agarwal, and G. L. Sharma, 'Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal- electrochemical method,' Sens. Actuators B 85 (2002) 205. [36] 呂福興,余錦智,揭由志,詹佩諠,伍祖璁,製備鈦酸鋇的方法,2006,中華民國發明專利,證書證號 I261633。 [37] 詹佩諠,電化學陽極氧化法於異質基材上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2004年。 [38] 余錦智,以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2005年。 [39] Y-C. Chieh, C-C Yu, and F-H Lu, 'Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method', Appl. Phys. Lett., 90 (2007) 032904. [40] 鄧煥平,以低溫-水熱化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2007年。 [41] H.-P. Teng, Y.-C. Chieh, and F.-H. Lu, 'Preparation of BaZrO3 films by physical vapor deposition and a novel hydrothermal duplex technique', Thin Solid Films, 516 (2007) 364. [42] P.-H. Chan, F.-H. Lu, 'Low-temperature hydrothermal-galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrate', Thin Solid Films, 517 (2009), 4782. [43] P.-H. Chan and F.-H. Lu, 'Low-temperature hydrothermal synthesis and the growth kinetics of BaTiO3 films on TiN/Si, Ti/Si, and bulk-Ti substrates,' J. Elec-trochem. Soc., 57 (2010) G130-G135. [44] 蔡迪佑,以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士論文,2010年。 [45] C.-J. Yang, D.-Y. Tsai, P.-H. Chan, C.-T. Wu, and F.-H. Lu, 'Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates,' Thin Solid Films 542 (2013) 108. [46] 林佳君,以水熱-化學電池法於不同表面形貌及電阻率之TiN/Si上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士論文,2011年。 [47] 蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士論文,2013年。 [48] Y. H. Tsai, Y. C. Chieh, and F.-H. Lu, 'Influence of Sr+2 concentrations on growth of SrTiO3 thin films synthesized by hydrothermal–galvanic couple method,' Thin Solid Films 570 (2014) 479. [49] 簡榛密,以水熱-化學電池法在鍍氮化鈦膜基材上製備鈦酸鋇膜與應用於天線之研究,國立中興大學材料科學與工程學系碩士論文,2012年。 [50] 陳祺涵,以低Ba離子濃度在水熱-化學電池法生成BaTiO3薄膜之探討,國立中興大學材料科學與工程學系碩士論文,2014年。 [51] 吳効泓,以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析,國立中興大學材料科學與工程學系碩士論文,2015年。 [52] H.-P. Teng, H.-H. Wu, and F.-H. Lu, 'Synthesis and formation mechanisms of Ba-ZrO3 thin films prepared on ZrN-coated substrates by a low temperature hydro-thermal–galvanic couple method,' Thin Solid Films, 618 (2016) 224-230. [53] 詹薰述,以水熱-化學電池法於TiN/Si基材上製備BaxSr1-xTiO3薄膜之特性研究,國立中興大學材料科學與工程學系碩士論文,2015年。 [54] P.-H. Chan, H.-S. Chan, and F.-H. Lu, 'A facile method to control grain sizes of barium strontium titanate films on TiN/Si in the hydrothermal–galvanic couple synthesis,' Ceram. Int., 43 (2017) S578-583. [55] M. W. Cole, Temperature Stabilization of BST Thin Films: A Critical Review, Fer-roelectrics 470 (2014) 67-89. [56] Z. Fu, A. Wu, and P. M. Vilarinho, 'Effect of Seed Layer Thickness on Texture and Electrical Properties of Sol−Gel Derived (Ba0.8Sr0.2)TiO3 Thin Films,' Chem. Ma-ter., , 18 (2006) 3343–3350. [57] M. Yoshimura, 'Soft solution processing: Concept and realization of direct fabrica-tion of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) in solutions without post-firing,' J. Mat. Sci. 41 (2006) 1299-1306. [58] K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology, Noyes Publications, New York (2001) 54-56. [59] J.-H. Huang, K.-W. Lau, and G.-P. Yu, 'Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magne-tron sputtering,' Surf. Coat. Technol., 191 (2005) 17. [60] L. Porte, L. Roux, and J. Hanus, 'Vacancy effects in the x-ray photoelectron spec-tra of TiNx,' Phys. Rev. B., 28 (1983) 3214. [61] C. Karl, W. Lengauer, D. Rafaja, and P. Ettmayer, 'Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides,' J. Alloys Compd. 265 (1998) 215. [62] E. J. Markel, and M. E. Leaphart II, Nitrides, in Encyclopedia of Chemical Tech-nology, edited by M.H. Grant, 4th ed., John Wiley and Sons, New York, 1996, Vol. 19, p.112. [63] H. O. Pierson. Handbook of refractory carbides and nitrides: properties, character-istics, processing, and applications, Noyes Publications, New Jersey (1996) p.193. [64] I. Dion, C. Baquey, B. Candelon, and J. R. Monties, 'Hemocompatibility of tita-nium nitride,' International Journal of Artificial Organs, 15 (1992) 617–621. [65] M. Schaldach, M. Hubmann, R. Hardt, and A. Weikl, 'Titanium nitride cardiac pacemaker electrodes,' Biomedizinische Technik, 34(1989) 185–190. [66] L. P. B. Limaab, J.A.Dinizab, I.Doiab, and J.Godoy Fob, 'Titanium nitride as elec-trode for MOS technology and Schottky diode: Alternative extraction method of titanium nitride work function, Microelectronic Engineering,' 92 (2012) 86-90. [67] B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Elsevier 2013 3rd, 952. [68] C.-J. Yang and F.-H. Lu, 'Shape and size control of Cu nanoparticles by tailoring the surface morphologies of TiN-coated electrodes for biosensing applications' Langmuir, 29 (2013) 16025-16033. [69] C.-Y. Yu, P.-J. Tsai, F.-H. Lu, 'Electrochemical synthesis of Ni nanoparticles over tailored TiN thin film electrodes for glucose sensing,' Ceram. Int., 43 (2017) S807-813. [70] C. N. Kirchner, K. H. Hallmeier, R. Szargan, T. Raschke, C Radehaus, G. Wittstock, 'Evaluation of Thin Film Titanium Nitride Electrodes for Electroanalytical Appli-cations,' Electroanalysis, 19 (2007) 1023-1031. [71] J.-L. Tseng, H.-P. Teng, F.-H. Lu, 'Electrochemical deposition of barium titanate thin films on TiN/Si substrates,' Surf. Coat. Technol., 231 (2013) 297-300. [72] H.-P. Teng, H.-W. Hsu, F.-H. Lu, 'Formation of BaxSr1-xTiO3 films on TiN-coated substrates by plasma electrolytic oxidation,' Ceram. Int., 43 (2017) S584-590. [73] J. F. Keithley, Daniell cell, John Wiley and Sons. (1999) 49-51. [74] C.F. Windisch Jr., J.W. Virden, S.H. Elder, J. Liu, M.H. Engelhard, Electrochemis-try of TiN in 6 M KOH solution, J. Electrochem. Soc., 145 (1998), 1211–1218. [75] PDF-2 CDROM, International Center for Diffraction Data, Newtown Square, PA (2000). [76] S. Korablov and M. Yoshimura, 'Hydrothermal corrosion of TiN PVD films on SUS-304,' Corros. Sci., 45 (2003) 531–543. [77] I. Milošv, H.‐H. Strehblow, B. Navinšek, M. Metikoš‐Huković, 'Electrochemical and thermal oxidation of TiN coatings studied by XPS,' Surf. Interface Anal., 23 (1995) 529-539. [78] I. Montero, C. Jiménez, J. M. Albella, J. Perrière, 'Growth of anodic oxides on re-actively sputtered TiNx films,' Surf. Interface Anal., 20 (1993) 503-507. [79] J. Piippo, B. Elsener, H.Böhni, 'Electrochemical characterization of TiN coating,' Surf. Coat. Technol., 61 (1993) 43-46. [80] R. I. Walton, F. Millange, R. I. Smith, T. C. Hansen, D. O'Hare, 'Real time obser-vation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction,' J. Am. Chem. Soc., 123(2001) 12547-12555. [81] J. D. Hancock and J. H. Sharp, 'Method of composition solid-state kinetic data and its application to the decomposition of kaolinite brucite and BaCO3', J. Am. Ceram. Soc., 55 (1971), 74. [82] W. A. Johson and R. F. Mehl, 'Reaction kinetics in processes of nucleation and growth,' Trans. Am. Inst. Min., Metall. Pet. Eng., 135 (1939), 416. [83] M. Avrami, 'Kinetics of phase change. I general theory'J. Chem. Phys., 7 (1939), 1103. [84] M. Avrami, 'Kinetics of phase change. II transformation‐time relations for random distribution of nuclei,' J. Chem. Phys., 8 (1940), 212. [85] M. Avrami, 'Kinetics of phase change. III. granulation, phase change, and micro-structure,' J. Chem. Phys., 9 (1941), 177. [86] B. V. Erofe'ev, 'Generalized equation of chemical kinetics and its application in reactions involving solids,' C. R. (Dokl.) Acad. Sci. URSS, 52 (1946), 511. [87] V. Kalyani, B S. Vasile, A. Ianculescu, A. Testino, A. Carino, M. T. Buscaglia, V. Buscaglia, and P. Nanni, 'Hydrothermal Synthesis of SrTiO3: Role of Interfaces,' Crystal Growth & Design, 15 (2015) 5712-5725. [88] I. Barin, F. Sauert, E. S. Rhonhof, and W. S. Sheng, Thermochemical Data of Pure Substances, VCH Publishers, New York, 2008. [89] S. Fuentes, E. Chávez, L.Padilla-Campos, D.E. Diaz-Droguett, 'Influence of reac-tant type on the Sr incorporation grade and structural characteristics of Ba1−xSrxTiO3 (x=0−1) grown by sol–gel-hydrothermal synthesis,' Ceram. Int., 39 (2013) 8823-8831.
摘要: 鈦酸鍶鋇(BaxSr1-xTiO3, BST)為鈣鈦礦結構,是BaTiO3和SrTiO3之固溶體,具有優異的介電等特性,可應用於各種相關器件。本水熱-化學電池製程,主要是利用化學電池的自發性反應輔以降低水熱製程溫度要求,相當符合現今環保及節能之要求,在低於100 oC常壓下,並以導電性及特性優異氮化鈦(TiN)薄膜作為底材,製備多元金屬BaxSr1-xTiO3薄膜,相較過去相關文獻中多數使用Ti塊材製備BaxSr1-xTiO3薄膜,TiN薄膜不僅具奈米尺寸效應,近年來常被應用於電極上,相當具有發展潛力。本研究主要是利用水熱-化學電池法,於TiN/Si基材上製備BaxSr1-xTiO3薄膜,探討製程方式、底材及溶液成份變化對製備BaxSr1-xTiO3薄膜之影響。 水熱-化學電池製備BaTiO3膜的成長速率明顯較水熱法快,且可降低製備溫度,其反應機制,製備出之薄膜結晶性及微結構皆與水熱法相似。對照水熱-電化學法,因為無外加電壓電流作用下,成膜速率較慢但膜厚均勻,且具特定優選方向,其反應過程中反應機制也與水熱及水熱-化學電池法不同。 在TiN膜、Ti膜及Ti塊材等不同底材製備鈦酸鋇膜,TiN/Si由於具有較小奈米顆粒的表面形貌,且本身結構特性影響,成長鈦酸鋇較Ti膜及Ti塊材成長之速率來的快,且製備出之BaTiO3膜具高優選方向,受試片底材本身的方向性及特性所影響,當反應時間固定2小時時,生成溫度高低比為Ti塊材(60oC) > Ti膜(52.5oC) > TiN膜(45oC)。 水熱-化學電池法於TiN上製備立方相之多元BaxSr1-xTiO3膜,薄膜具高結晶方向性,薄膜特性和微結構受薄膜成份影響,改變溶液中Ba與Sr離子的比例或總濃度,可控制BaxSr1-xTiO3膜成份及微結構變化,其中BaxSr1-xTiO3膜隨著Ba與Sr的含量不同其繞射峰有所偏移,因Ba與Sr離子半徑不同,導致晶格產生變化,也影響薄膜結晶性,另外因BaTiO3與TiN晶格之匹配率大於SrTiO3,也影響薄膜成長機制,而介電諧調率在Ba0.75Sr0.25TiO3膜上可達92%,顯示所製備出多元 BST膜具優異介電特性。
Barium titanate (BaxSr1-xTiO3, BST) is a solid solution of BaTiO3 and SrTiO3. It has excellent dielectric properties and can be applied to various related devices. The hydro-thermal-galvanic couple process utilizes the spontaneous reaction of the galvanic cell to reduce the hydrothermal process temperature requirements, which meets the current en-vironmental and energy-saving requirements. The preparation of multi-component BaxSr1-xTiO3 film over conductive TiN seeding layer was conducted at < 100oC under normal pressure by the hydrothermal-galvanic couple method. The reaction concentra-tions were 2 M NaOH mixed with various and concentrations of Ba(CH3COO)2 and Sr(CH3COO)2. The effects of process, substrate, and solution concentration on the preparation of BaxSr1-xTiO3 films were investigated. The growth rate of BaTiO3 in the hydrothermal-galvanic couple method is much faster than that in sole hydrothermal method, and the reaction temperature could be also lowered. The reaction mechanism, crystallinity, and microstructure of films were similar to those prepared by a hydrothermal method. Compared with the hydrother-mal-electrochemical method, the hydrothermal-galvanic method without applying ex-ternal voltage/current though had a slower growth rate while possessed even film thick-ness and the films showed preferred orientation. BaTiO3 films were prepared on TiN and Ti-coated Si as well as bulk-Ti substrates by the hydrothermal method at temperatures below 100oC. The ease of forming BaTiO3 on TiN/Si is due to structural characteristics and the nano-grained nature of TiN films. The cubic BaTiO3 films were successfully formed on TiN/Si and Ti/Si over a period of 2 hr at temperatures as low as 45oC and 52.5oC, respectively while formation of BaTiO3 on bulk-Ti required temperatures ex-ceeding 60oC for the same reaction time. The hydrothermal-galvanic couple method was used to prepare cubic BaxSr1-xTiO3 films on TiN. BaxSr1-xTiO3 films were found to grow epitaxially over the TiN underlayer with a strongly preferred orientation. BaxSr1-xTiO3 films with various grain sizes have been controlled by merely varying the total concentration or the Ba/(Ba+Sr) ratio of the reaction solutions during the hydrothermal-galvanic couple synthesis. The diffraction peaks of BaxSr1-xTiO3 film shifed due to the different contents of Ba and Sr. Because of the different radii of Ba and Sr ions, the lattice changes and the film crystallinity is also affected. The dielectric tenability of Ba0.75Sr0.25TiO3 can reach up to 92%, indications superior dielectric characteristics of BST.
URI: http://hdl.handle.net/11455/97929
文章公開時間: 2021-08-31
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.