Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97951
標題: 砷化鋁鎵與磷化銦鎵發光閘流體之設計和製造
Design and Fabrication of AlGaAs- and GaInP-based Light-Emitting Thyristors
作者: 陳慶合
Ching-Ho Chen
關鍵字: LED印表機
LED影印機
發光閘流體
閘流體
三極體
布拉格反射鏡
電流擴散層
砷化鋁鎵
砷化鋁
砷化鎵
磷化銦鎵
磷化銦鋁
磷化鎵
氧化銦錫
有機金屬化學氣相沉積
LED printer
LET
thyristor
triode
DBR
current spreading
AlAs
GaAs
AlGaAs
GaInP
AlInP
GaP
ITO
MOCVD
引用: [1] 羅正漢,'突破LED瓶頸的新一代列印技術:S-LED',iThome。 [2] K. Tateishi and Y. Hoshino, 'Electrophotographic Printer Using LED Array' , IEEE Transactions on Industry Appli-cations, Vol. IA-19, No. 2, pp. 169-172, 1983. [3] M. Ogihara, H. Fujiwara, M. Mutoh, T. Suzuki, T. Igari, T. Sagimori, H. Kurokawa, T. Kaneto, H. Furuta, I. Abiko, and M. Sakuta, 'LED Array Integrated With Si Driving Circuits for LED Printer Printhead', Electronics Letter, Vol. 42, No. 15, pp. 881-883, 2006. [4] S. Ohno, Y. Kusuda, N. Komaba, Y. Kuroda, K. Yamashita, and S. Tanaka, 'Two-Phase Drive Self-Scanning Light-Emitting Device (SLED) Using Coupling Diodes', Jpn. J. Appl. Phys., Vol. 30, No. 3A, pp. L380-L382, 1991. [5] Y. Kusuda, K. Tone, S. Tanaka, and K. Yamashita, 'Self-Scanning Light-Emitting Device (SLED) Using pnpn Thyristor Structure', Jpn. J. Appl. Phys., Vol. 31, No. 5A, pp. 1280-1286, 1992. [6] Lucy Chang,'SLED技術在印表機中的應用',LEDindide。 [7] S. Ohno, Y. Kusuda, N. Komaba, Y. Kuroda, K. Yamashita and S. Tanaka, 'Integrated Self-scanning Light-Emitting Device (SLED),' Appl. Phys. Lett, Vol. 40, pp. 2216-2221, 1993. [8] G. W. Taylor, R. S. Mand, J. G. Simmons and A. Y. Cho, 'Ledistor-a three‐terminal double heterostructure optoelectronic switch,' Appl. Phys. Lett, Vol. 50, pp.338-340, 1987. [9] G. W. Taylor, D. L. Crawford and J. G. Simmons, 'Optoelectronic dynamic random access memory cell utilizing a three‐terminal N‐channel self‐aligned double‐heterostructure optoelectronic switch,' Appl. Phys. Lett., Vol. 54, pp. 543-545, 1989. [10] I. Ogura, Y. Tashiro, S. Kawai, K. Yamada, M. Sugimoto, K. Kubota and K. Kasahara, 'Reconfigurable optical interconnection using a two-dimensional vertical to surface transmission electrophotonic device array,' Appl. Phys. Lett., Vol. 57, pp.540-542, 1990. [11] K. Matsuda, K. Takimoto, D. H. Lee, J. Shibata, 'Integration of 1024 InGaAsP/InP optoelectronic bistable switches', IEEE Trans. Electron Devices, Vol. 37, pp.1630–1634, 1990. [12] K. Hara, K. Kojima, K. Mitsunaga, K. Kyuma, 'Differential optical comparator using parallel connected AlGaAs pnpn optical switches,' Electron Lett., Vol. 25, pp. 433-434, 1989. [13] G. W. Taylor, J. G. Simmons, A. Y. Cho and R. S. Mand, J. 'A new double‐heterostructure optoelectronic switching device using molecular‐beam epitaxy,' Appl. Phys. Vol. 59, pp.596-600, 1986. [14] K. Kasahara, Y. Tashiro, N. Hamao, M. Sugimoto, and T. Yanase, 'Double heterostructure optoelectronic switch as a dynamic memory with lowpower consumption,' Appl. Phys. Lett. Vol. 52, pp. 679-681, 1988. [15] M. C. Tseng, C. L. Chen, N. K. Lai, S. I. Chen, T. C. Hsu, Y. R. Peng, and R. H. Horng, 'P-side-up thin-film AlGaInP-based light emitting diodes with direct ohmic contact of an ITO layer with a GaP window layer,' Opt. Express Vol. 22, pp. A1862–A1867, 2014. [16] M. C. Tseng, D. S. Wuu, C. L. Chen, H. Y. Lee, Y. C. Lin, and R. H. Horng, 'Performance comparison of p-side-up thin-film AlGaInP light emitting diodes with aluminu doped zinc oxide and indium tin oxide transparent conductive layers,' Opt. Mater. Express, Vol. 6, pp. 1349-1357 (2016). [17] C. H. Yen, Y. J. Liu, K. H. Yu, P. L. Lin, T. P. Chen, L. Y. Chen, T. H. Tsai, N. Y. Huang, C. Y. Lee, and W. C. Liu, 'On an AlGaInP-based light-emitting diode with an ITO direct ohmic contact structure,' IEEE Electron Device Lett. Vol. 30, 359–361 (2009). [18] H. M. Lo, S. C. Shei, X. F. Zeng, S. J. Chang, H. Y. Lin, 'AlGaInP-based LEDs with a p+-GaP window layer and a thermally annealed ITO contact,' IEEE J. Quantum Electron., Vol. 47, pp. 803-809, 2011. [19] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, 'Enhanced output power of InGaN–GaN lightemitting diodes with high-transparency nickel-oxide–indium-tin-oxide ohmic contacts,' IEEE Photonics Technol. Lett. Vol. 15, pp.646–648, 2003. [20] J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, 'Stability of AlAs in AlxGa1-xAs-AlAs- GaAs quantum well heterostructures,' Appl. Phys. Lett. Vol. 56, pp. 2436 , 1990. [21] S. W. Chiou, C. P. Lee, C. K. Huang and C. W. Chen, 'Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,' J. Appl. Phys. Vol. 87, pp. 2052-2054, 2000. [22] W. K. Choi, D. G. Kim, Y. W. Choi, S. Lee, D. H. Woo and S. H. Kim, ' AlGaAs/GaAs NpnP Depleted Optical Thyristor Using Bottom Mirror Layers,' J. Appl. Phys. Vol. 44, No. 5A, pp. 2913–2920, 2005. [23] W. K. Choi, D. G. Kim, Y. T. Moon, and Y.-W. Choi, 'Optical properties of selectively oxidized vertical cavity laser with depleted optical thyristor structure,' Appl. Phys. Lett. Vol. 89, 121117, 2006. [24] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, and A. S. H. Liao, 'Twofold efficiency improvement in high performance AlGaInP light‐emitting diodes in the 555–620 nm spectral region using a thick GaP window layer' Appl. Phys. Lett. Vol. 61, pp. 1045-1047, 1992. [25] S. M. Sze, 'SEMICONDUCTOR DEVICES Physics and Technology 3nd Edition', pp. 156-160. [26] M Razeghi ,'The MOCVD Challenge', Institute of Physics Publishing 1995. [27] C. J. Pinzone,'MOCVD process', Wikimedia Commons. [28] C. H. Chen, S. A. Stockman, M. J. Peanasky, and C. P. Kuo, 'OMVPE Growth of AlGaInP for High-Efficiency Visible Light Emitting Diodes, ' Semiconducts and Semimetals, Vol. 48, pp. 98, 1997. [29] Sulochanadevi Baskaran,'Structure and regulation of yeast glycogen synthase', The PhD thesis, Department of Biochemistry and Molecular Biology, Indiana University. [30] 林文禹,'不同插入結構對氮化物藍紫光發光二極體效能提升之研究',國立中興大學博士論文。 [31] 紀國鐘,蘇炎坤,'光電半導體技術手冊',台灣電子材料與元件協會。 [32] 陳宇傑,'提升閘流體發光二極體元件特性之研究',國立中興大學碩士論文。
摘要: 本論文以提升發光閘流體之發光效率與增進閘流體特性為主要目標,因現今LED印表機發展有以下瓶頸:(1)砷化鎵(GaAs)表面窗口層遮光造成亮度低下,若要以成本較低廉之濕蝕刻去除會傷及同為砷化物的AlGaAs磊晶結構;(2)砷化鋁鎵(AlGaAs)磊晶為主動層材料時其鋁成份易造成氧化進而影響可靠度;(3)GaAs基板吸光問題也會造成亮度低下;(4)閘流體元件發光均勻性不一。故本論文經由模擬磊晶與製程結構進而得知改善方向,並使用下列方法提升發光均勻性、效率與可靠度:(1)為使用磷化鎵(GaP)的表面接觸層取代GaAs解決遮光問題;(2)開發無鋁成份之磷化銦鎵(GaInP)取代AlGaAs成為主動層材料讓元件氧化疑慮消除;(3)在元件與基板中間成長布拉格反射鏡(DBR)以讓往下發光之光線能反射不被GaAs基板所吸收;(4)使用氧化銦錫(ITO)當窗口層讓亮度大幅增加。 開發之新材料GaInP之閘流體元件能具有閘流體特性,加入GaP窗口層後,在注入電流為250 mA時,發光強度提升70%。在150 mA注入電流下,GaP層使表面溫度降低了11 ℃。使用布拉格反射鏡降低了操作電壓、維持了高電流操作時的波長紅移量與增加發光強度。其在900mA的注入電流下,發光強度提升了71%。具有ITO窗口層的GaInP發光閘流體其輸出功率提升了485%發光強度與2.7%的外部量子效益,且ITO且不會增加發光區表面溫度,在Von上能降低0.74V。 量測從100 mA至900 mA電流的波長偏移量,量產之AlGaAs元件的波長紅移是11.5 nm,而GaInP元件的紅移1.64 nm,在加入ITO薄膜後,AlGaAs元件波長紅移10.5 nm,GaInP元件的紅移是4.08 nm。由此可見因GaInP無含有易氧化鋁成分所以元件操作下相對穩定。 ITO在p型接觸層元件上有較好的接觸電阻特性,甚至可以降低0.74 Von,而在n型接觸層元件上則會增加6.19 Von。比較ITO在p型與n型接觸層電流分佈圖可以看出,ITO與p型接觸層的電流擴散已接近完美之狀態,而n型接觸層上則是差異較不明顯,因此在輸出功率上在p型接觸層上可提升485%,而在n型上則只有21%。顯示發光閘流體應生長在n型GaAs基板上才能有較好的提升方法,以n-sub.-n-p-n-p結構取代p-sub.-p-n-p-n,其一優點可以使用ITO增強發光效率並降低啟動電壓,其二優點為n型GaAs基板在價格上也較p型GaAs基板價格便宜約三倍。
This study aims to propose a method for improving the luminous efficiency and characteristics of light-emitting thyristors (LETs) to address the following bottlenecks in the development of LED printers: (1) the window layer of gallium arsenide (GaAs) blocks light, which decreases output power, and removal of wet etching at a lower cost will damage the aluminium gallium arsenide (AlGaAs) epitaxial structure of the same arsenide; (2) when AlGaAs epitaxy serves as an active layer, the aluminum composition makes it vulnerable to oxidation, which affects reliability; (3) light absorption problems associated with GaAs substrates can decrease brightness; and (4) the thyristor components have different illumination uniformity. This study examines improvement using simulations of epitaxy and process structures, and the following methods were used to improve illuminance uniformity, efficiency, and reliability: (1) the surface contact layer of gallium phosphide (GaP) replaces GaAs to overcome the shading problem; (2) development of aluminum-free phosphide indium gallium (GaInP) to replace AlGaAs as the active layer material, thereby eliminating oxidation issues; (3) a distributed Bragg reflector (DBR) is grown between the component and substrate so the downward illuminating light can be reflected and not absorbed by the GaAs substrate; and (4) using indium tin oxide (ITO) as a window layer to increase brightness. Thyristors made from the new material, GaInP, has typical thyristor properties. When the GaP window layer is added, the luminescence intensity is increased by 70% when the injection current is 250 mA, and the GaP layer reduces the surface temperature by 11 oC at an injection current of 150 mA. The DBR can be used to reduce the operating voltage and maintain the redshift in wavelength and increase luminous intensity during high current operation. More specifically, the luminous intensity increased by 71% at an injection current of 900 mA. The GaInP thyristor with an ITO window layer had an output power that increased luminescence intensity by 497% and external quantum efficiency by 4.7% while avoiding an increase in the surface temperature of the light-emitting area and reducing the turn-on voltage by 0.74 V. When a wavelength shift from 100 to 900 mA was measured, the wavelength redshift of the mass-produced AlGaAs–LET was 11.5 nm, and the redshift of the GaInP element was 1.64 nm. After adding the ITO film, the wavelength redshift of the AlGaAs element was 10.5 nm, and the redshift of the GaInP component was 4.08 nm. Since GaInP does not contain an alumina component, the component is relatively stable during operation. ITO displayed a good contact resistance on p-type contact layer device, which can reduce the Von by 0.74 V, whereas the Von increased by 6.19 V in the n-type contact layer device. In Comparison to the current spreading of ITO for p- and n-type contact layers, the current spreading of ITO in p-type contact layers is near perfect, while the difference is less obvious for ITO in n-type contact layers. Therefore, the output power can be increased by 485% in the p-type contact layer and only 21% in the n-type layer. Results of this study indicated that the light-emitting thyristor should be grown on the n-type GaAs substrate to realize more improvement and replace the p-sub.–p–n–p–n with the n-sub.–n–p–n–p structure. There are two advantages of using n-sub.–n–p–n–p structure, including the fact that ITO can be used to enhance luminous efficiency and reduce the turn-on voltage, while the n-type GaAs substrate is approximately three times cheaper than the p-type GaAs substrate.
URI: http://hdl.handle.net/11455/97951
文章公開時間: 10000-01-01
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.