Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98002
標題: 大豆異黃酮自乳化凝膠載體研發及其溶解性、體外釋放特性評估
Alginate Beads of Self-emulsifying Isoflavone and Evaluation of Its Solubility and Release Characteristics
作者: 林依穎
Yi-Ying Lin
關鍵字: 大豆異黃酮
自乳化傳遞系統 (SEDS)
凝膠球粒
海藻酸鈉
乳化劑
助溶劑
Isoflavone
SEDS
hydrogel bead
sodium alginate
emulsifier
co-emulsifier
引用: 楊楷民。2018。藻油氧化安定性及其與米糠醇自乳化凝膠載體之製備、消化安定性探討。國立中興大學食品暨應用生物科技學系博士論文。台灣台中。 黃玉鈴。2015。綠茶粉及綠茶萃取物之多顆粒緩釋錠劑研發及其物性評估。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。 郭詠梅。2014。發芽稻穀成分分析及其葉綠素微膠囊技術開發之研究。國立中興大學食品暨應用生物科技學系所碩士論文。 陳琇瑜。2013。熱處理與包覆造粒對米糠機能成分保護及降低吸濕性之探討。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。 陳愉婷。2013。菱角殼纖維/益生菌/益生質─複合式晶球製備及其體外模擬釋控評估。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。 蘇柏駿、林奕廷、林宏昇、江伯源。2012。' 海藻酸-鈣'-凝膠球粒成型機制及影響性探討。台灣農業化學與食品科學。 蔡馥亘。2012。牛蒡葉萃取機能晶球製備及其體外模擬釋放評估。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。 許時嬰、張曉鳴、夏書芹、張文彬。2006。微膠囊技術-原理與應用。化學工業出版社。 林宏昇。2011。以模式系統評估桂枝凝膠造粒技術。國立中興大學食品暨應用生物科技學系碩士論文。台灣台中。 金安兒。2009。乳酸菌的微膠囊化。科學發展。411:p36-41 劉正雄。2006。藥物劑型與傳遞系統。第八版。九州圖書公司。 簡相堂。2014。食品產業年鑑。食品工業發展研究所。 Adlercreutz, H., & Mazur, W. (1997). Phyto-oestrogens and Western Diseases. Annals of Medicine, 29(2), 95-120. Ahn-Jarvis, J., Clinton, S. K., Riedl, K. M., Vodovotz, Y., & Schwartz, S. J. (2012). Impact of food matrix on isoflavone metabolism and cardiovascular biomarkers in adults with hypercholesterolemia. Food & Function, 3(10), 1051-1058. Ahn-Jarvis, J. H., Riedl, K. M., Schwartz, S. J., & Vodovotz, Y. (2013). Design and Selection of Soy Breads Used for Evaluating Isoflavone Bioavailability in Clinical Trials. Journal of agricultural and food chemistry, 61(12), 3111-3120. Amidon, G. L., Lennernas, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res, 12(3), 413-420. Amresh, G., Agarwal, V. K., & Rao, C. V. (2018). Self microemulsifying formulation of Lagerstroemia speciosa against chemically induced hepatotoxicity. Journal of Traditional and Complementary Medicine, 8(1), 164-169. Anne, K., Tina, B., M., K. F., R., M. D., Marion, P., T., S. S., E., K. S., & Patrick, D. (2015). Lifelong exposure to dietary isoflavones reduces risk of obesity in ovariectomized Wistar rats. Molecular Nutrition & Food Research, 59(12), 2407-2418. Artursson, P., & Karlsson, J. (1991). Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun, 175(3), 880-885. Balakrishnan, S., & Eastmond, D. (2003). Evaluation of hyperdiploidy in the bladder epithelial cells of male F344 rats treated with ortho-phenylphenol. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 537(1), 11-20. Balisteiro, D. M., Rombaldi, C. V., & Genovese, M. I. (2013). Protein, isoflavones, trypsin inhibitory and in vitro antioxidant capacities: Comparison among conventionally and organically grown soybeans. Food research international, 51(1), 8-14. Belcher, S. M., & Zsarnovszky, A. (2001). Estrogenic Actions in the Brain: Estrogen, Phytoestrogens, and Rapid Intracellular Signaling Mechanisms. Journal of Pharmacology and Experimental Therapeutics, 299(2), 408-414. Birt, D. F., Hendrich, S., & Wang, W. (2001). Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther, 90(2-3), 157-177. Caliph, S. M., Charman, W. N., & Porter, C. J. (2000). Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci, 89(8), 1073-1084. Cao, Y., Marra, M., & Anderson, B. D. (2004). Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J Pharm Sci, 93(11), 2768-2779. Carballo, M., Hick, A., Soloneski, S., Larramendy, M., & Mudry, M. (2006). Genotoxic and aneugenic properties of an imidazole derivative. Journal of applied Toxicology, 26(4), 293-300. Cheetham, P. S., Blunt, K. W., & Bocke, C. (1979). Physical studies on cell immobilization using calcium alginate gels. Biotechnology and bioengineering, 21(12), 2155-2168. Chu, Z. Y., Hwan, L. J., Yael, V., & J., S. S. (2004). Changes in Distribution of Isoflavones and β‐Glucosidase Activity During Soy Bread Proofing and Baking. Cereal Chemistry, 81(6), 741-745. Constantinides, P. P. (1995). Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res, 12(11), 1561-1572. Craig, D. Q. M., Barker, S. A., Banning, D., & Booth, S. W. (1995). An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int J Pharm, 114(1), 103-110. Cui, J.-H., Goh, J.-S., Kim, P.-H., Choi, S.-H., & Lee, B.-J. (2000). Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. International Journal of Pharmaceutics, 210(1), 51-59. Dabros, T., Yeung, A., Masliyah, J., & Czarnecki, J. (1999). Emulsification through Area Contraction. Journal of Colloid and Interface Science, 210(1), 222-224. Dang, Z., & Lowik, C. W. (2004). The balance between concurrent activation of ERs and PPARs determines daidzein-induced osteogenesis and adipogenesis. J Bone Miner Res, 19(5), 853-861. Day, A. J., DuPont, M. S., Ridley, S., Rhodes, M., Rhodes, M. J., Morgan, M. R., & Williamson, G. (1998). Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett, 436(1), 71-75. Deckelbaum, R. J., Hamilton, J. A., Moser, A., Bengtsson-Olivecrona, G., Butbul, E., Carpentier, Y. A., Gutman, A., & Olivecrona, T. (1990). Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanisms of lipase action. Biochemistry, 29(5), 1136-1142. Eldridge, A. C., & Kwolek, W. F. (1983). Soybean isoflavones: effect of environment and variety on composition. Journal of agricultural and food chemistry, 31(2), 394-396. Erdman, J. W. (2000). Soy protein and cardiovascular disease: a statement for healthcare professionals from the nutrition committee of the AHA. Circulation, 102(20), 2555-2559. Ewe, J.-A., Wan-Abdullah, W.-N., Alias, A. K., & Liong, M.-T. (2013). Ultraviolet radiation enhanced growth of lactobacilli and their bioconversion of isoflavones in biotin-supplemented soymilk. LWT-Food Science and Technology, 50(1), 25-31. G. Wakerly, M., Pouton, C., J. Meakin, B., & S. Morton, F. (1986). Self-Emulsification of Vegetable Oil-Nonionic Surfactant Mixtures (Vol. 311). Gershanik, T., & Benita, S. (2000). Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm, 50(1), 179-188. Griffin, B. T., & O'Driscoll, C. M. (2006). A comparison of intestinal lymphatic transport and systemic bioavailability of saquinavir from three lipid-based formulations in the anaesthetised rat model. J Pharm Pharmacol, 58(7), 917-925. Gupta, S., Kesarla, R., & Omri, A. (2013). Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm, 2013, 848043. Gursoy, N., Garrigue, J. S., Razafindratsita, A., Lambert, G., & Benita, S. (2003). Excipient effects on in vitro cytotoxicity of a novel paclitaxel self-emulsifying drug delivery system. J Pharm Sci, 92(12), 2411-2418. Han, K. K., Soares Jr, J. M., Haidar, M. A., De Lima, G. R., & Baracat, E. C. (2002). Benefits of soy isoflavone therapeutic regimen on menopausal symptoms. Obstetrics & Gynecology, 99(3), 389-394. Hauss, D. J. (2007). Oral lipid-based formulations. Adv Drug Deliv Rev, 59(7), 667-676. Hauss, D. J., Fogal, S. E., Ficorilli, J. V., Price, C. A., Roy, T., Jayaraj, A. A., & Keirns, J. J. (1998). Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci, 87(2), 164-169. Hawksworth, G., Drasar, B. S., & Hill, M. J. (1971). Intestinal bacteria and the hydrolysis of glycosidic bonds. J Med Microbiol, 4(4), 451-459. Huang, R. Y., & Chou, C. C. (2008). Heating affects the content and distribution profile of isoflavones in steamed black soybeans and black soybean koji. J Agric Food Chem, 56(18), 8484-8489. Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y., & Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of nutrition, 130(7), 1695-1699. Kapiotis, S., Hermann, M., Held, I., Seelos, C., Ehringer, H., & Gmeiner, B. M. (1997). Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol, 17(11), 2868-2874. Kassem, A. A., Marzouk, M. A., Ammar, A. A., & Elosaily, G. H. (2010). Preparation and in vitro evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) containing clotrimazole. Drug Discov Ther, 4(5), 373-379. Kayano, S.-i., Matsumura, Y., Kitagawa, Y., Kobayashi, M., Nagayama, A., Kawabata, N., Kikuzaki, H., & Kitada, Y. (2012). Isoflavone C-glycosides isolated from the root of kudzu (Pueraria lobata) and their estrogenic activities. Food chemistry, 134(1), 282-287. Kiyasu, J. Y., Bloom, B., & Chaikoff, I. L. (1952). The portal transport of absorbed fatty acids. J Biol Chem, 199(1), 415-419. Kommuru, T. R., Gurley, B., Khan, M. A., & Reddy, I. K. (2001). Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm, 212(2), 233-246. Kritz-Silverstein, D., Von Mühlen, D., Barrett-Connor, E., & Bressel, M. A. (2003). Isoflavones and cognitive function in older women: the SOy and Postmenopausal Health In Aging (SOPHIA) Study. Menopause, 10(3), 196-202. L., B. D., B., M. M., A., H. E., & S.‐M., H. (1997). Improved oral bioavailability of the hypocholesterolemic DMP 565 in dogs following oral dosing in oil and glycol solutions. Biopharmaceutics & Drug Disposition, 18(8), 737-742. Lee, M. Y., Kim, H. Y., Singh, D., Yeo, S. H., Baek, S. Y., Park, Y. K., & Lee, C. H. (2016). Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model. Molecules, 21(2), 149. Lee, S. J., Yan, W., Ahn, J. K., & Chung, I. M. (2003). Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crops Research, 81(2), 181-192. Lesinski, G. B., Reville, P. K., Mace, T. A., Young, G. S., Ahn-Jarvis, J., Thomas-Ahner, J., Vodovotz, Y., Ameen, Z., Grainger, E., Riedl, K., Schwartz, S., & Clinton, S. K. (2015). Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells. Cancer Prev Res (Phila), 8(11), 1036-1044. M., M., A., O., & D., F. (1989). Objectionable Flavor of Soy Milk Developed during the Soaking of Soybeans and its Control. Journal of Food Science, 54(3), 602-605. M., S. A. T., Pai‐Chang, S., Daniel, M., F., B. D., & A., A. M. (1988). Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water‐soluble drug from solid dispersions. Journal of pharmaceutical sciences, 77(5), 414-417. Martinsen, A., Skjåk‐Bræk, G., & Smidsrød, O. (1989). Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnology and bioengineering, 33(1), 79-89. Matsuoka, K., Kuranaga, Y., & Moroi, Y. (2002). Solubilization of cholesterol and polycyclic aromatic compounds into sodium bile salt micelles (part 2). Biochim Biophys Acta, 1580(2-3), 200-214. Miksicek, R. J. (1995). Estrogenic flavonoids: structural requirements for biological activity. Proc Soc Exp Biol Med, 208(1), 44-50. O'Toole, D. K. (2004). Soybean | Soymilk, Tofu, and Okara. Okabe, Y., Shimazu, T., & Tanimoto, H. (2011). Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J Sci Food Agric, 91(4), 658-663. Palin, K. J., Phillips, A. J., & Ning, A. (1986). The oral absorption of cefoxitin from oil and emulsion vehicles in rats. Int J Pharm, 33(1), 99-104. Park, E.-K., Shin, J., Bae, E.-A., Lee, Y.-C., & Kim, D.-H. (2006). Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biological and Pharmaceutical Bulletin, 29(12), 2432-2435. Phillips, K. M., Ruggio, D. M., Toivo, J. I., Swank, M. A., & Simpkins, A. H. (2002). Free and Esterified Sterol Composition of Edible Oils and Fats. Journal of Food Composition and Analysis, 15(2), 123-142. Piornos, J. A., Burgos-Díaz, C., Morales, E., Rubilar, M., & Acevedo, F. (2017). Highly efficient encapsulation of linseed oil into alginate/lupin protein beads: Optimization of the emulsion formulation. Food Hydrocolloids, 63, 139-148. Pocock, D. E., & Vost, A. (1974). DDT absorption and chylomicron transport in rat. Lipids, 9(6), 374-381. Porter, C. J., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov, 6(3), 231-248. Porter, C. J. H., & Charman, W. N. (2001). In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev, 50, S127-S147. Pouton, C. W. (1985). Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int J Pharm, 27(2), 335-348. Pouton, C. W., & Porter, C. J. (2008). Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev, 60(6), 625-637. Rang, M. J., & Miller, C. A. (1999). Spontaneous Emulsification of Oils Containing Hydrocarbon, Nonionic Surfactant, and Oleyl Alcohol. J Colloid Interface Sci, 209(1), 179-192. Reiss, H. (1975). Entropy-induced dispersion of bulk liquids. Journal of Colloid and Interface Science, 53(1), 61-70. Routledge, E. J., Parker, J., Odum, J., Ashby, J., & Sumpter, J. P. (1998). Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicology and applied pharmacology, 153(1), 12-19. Schwendener, R. A., & Schott, H. (1996). Lipophilic 1-beta-D-arabinofuranosyl cytosine derivatives in liposomal formulations for oral and parenteral antileukemic therapy in the murine L1210 leukemia model. J Cancer Res Clin Oncol, 122(12), 723-726. Serajuddin, A. T. (1999). Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci, 88(10), 1058-1066. Setchell, K. D. R., & Adlercreutz, H. (1988). 14 - Mammalian Lignans and Phyto-oestrogens Recent Studies on their Formation, Metabolism and Biological Role in Health and Disease A2 - Rowland, I.R. In Role of the Gut Flora in Toxicity and Cancer, (pp. 315-345): Academic Press. Staggers, J. E., Hernell, O., Stafford, R. J., & Carey, M. C. (1990). Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings. Biochemistry, 29(8), 2028-2040. Tamir, S., Eizenberg, M., Somjen, D., Stern, N., Shelach, R., Kaye, A., & Vaya, J. (2000). Estrogenic and antiproliferative properties of glabridin from licorice in human breast cancer cells. Cancer research, 60(20), 5704-5709. Tarr, B. D., & Yalkowsky, S. H. (1989). Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size. Pharm Res, 6(1), 40-43. Tsangalis, D., Ashton, J. F., Stojanovska, L., Wilcox, G., & Shah, N. P. (2004). Development of an isoflavone aglycone-enriched soymilk using soy germ, soy protein isolate and bifidobacteria. Food research international, 37(4), 301-312. Turner, N. J., Thomson, B. M., & Shaw, I. C. (2003). Bioactive isoflavones in functional foods: the importance of gut microflora on bioavailability. Nutr Rev, 61(6 Pt 1), 204-213. Vaya, J., & Tamir, S. (2004). The relation between the chemical structure of flavonoids and their estrogen-like activities. Current medicinal chemistry, 11(10), 1333-1343. Wang, H.-j., & Murphy, P. A. (1994). Isoflavone content in commercial soybean foods. Journal of agricultural and food chemistry, 42(8), 1666-1673. Wang, H., & Murphy, P. A. (1994). Isoflavone Composition of American and Japanese Soybeans in Iowa: Effects of Variety, Crop Year, and Location. Journal of agricultural and food chemistry, 42(8), 1674-1677. Wei, Q.-K., JONE, W. W., & FANG, T. J. (2004). Study on Isoflavones Isomers Contents in Taiwan's Soybean and GM Soybean. Journal of Food and Drug Analysis, 12(4). Yamaguchi, M. (2002). Isoflavone and Bone Metabolism: Its Cellular Mechanism and Preventive Role in Bone Loss. Journal of Health Science, 48(3), 209-222. Yeh, T.-C., Chiang, P.-C., Li, T.-K., Hsu, J.-L., Lin, C.-J., Wang, S.-W., Peng, C.-Y., & Guh, J.-H. (2007). Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochemical Pharmacology, 73(6), 782-792. Yezbick, G., Ahn-Jarvis, J., Schwartz, S. J., & Vodovotz, Y. (2013). Physicochemical characterization and sensory analysis of yeast-leavened and sourdough soy breads. J Food Sci, 78(10), C1487-c1494. Yuasa, H., Sekiya, M., Ozeki, S., & Watanabe, J. (1994). Evaluation of milk fat-globule membrane (MFGM) emulsion for oral administration: absorption of alpha-linolenic acid in rats and the effect of emulsion droplet size. Biol Pharm Bull, 17(5), 756-758. Zhang, R., Zhang, Z., Zhang, H., Decker, E. A., & McClements, D. J. (2015). Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocolloids, 45, 175-185.
摘要: 大豆異黃酮 (soy isoflavone) 為一種大豆中所含的「植化素」(phytochemicals),其具有諸多人體功效,包括預防乳腺癌、心血管疾病以及緩解更年期症狀等,為一種極具發展潛力之保健食品素材。然而,有研究顯示,大豆異黃酮之生物利用率小於4%,原因為其具生物活性之型式─苷元 (aglycon) 水溶性差,導致難溶於人體消化液中,進而影響其生物利用性。本研究欲利用自乳化傳遞系統改善大豆異黃酮水溶性不佳之問題,實驗結果顯示,中鏈脂肪酸、乳化劑Tween 80、助溶劑Labrasol® 對大豆異黃酮之溶解度分別為4.72 mg/ mL、16.03 mg/ mL、30.14 mg/ mL,相較於其難溶於水之性質,確實有效提升其溶解度之效果。將大豆異黃酮自乳化液製備成凝膠球粒後,其粒徑大小為1.75 ± 0.11 mm、圓形度為0.26、硬度為2.03 ± 0.07 N、包埋率為95.31 ± 0.15%,熱焓值為1616 J/g,在熱處理試驗中,其硬度變化下降至1.85 N,膨潤力由0提升至92.63%,熱釋放率僅為0.70 ±0.01 %。在體外模擬試驗中,實驗結果顯示,三組自乳化凝膠球粒在胃部釋放約0.6 ~ 0.75 %之大豆異黃酮,經十小時模擬腸道後,三組樣品之累積釋放率最高可達87.51 %,顯示大豆異黃酮可透過自乳化凝膠之載體達到高釋放量。
Soy isoflavone is a kind of 'phytochemicals' contained in soybeans. It has many human effects, including prevention of breast cancer, cardiovascular disease and alleviation of menopausal symptoms. However, studies have shown that the bioavailability of soy isoflavones is less than 4% due to its low solubility. This study aims to improve the water solubility of soy isoflavones by using the technology of self-emulsification delivery system (SEDS). The results show that the solubility of MCT is 4.72 mg/mL, the emulsifier Tween 80 is 16.03 mg/mL, and the cosolvent Labrasol® is 30.14 mg/mL. After the preparation of self-emulsified isoflavone hydrogel bead, the particle size, sphericity, hardness, encapsulation rate and thermal enthalpy is 1.75 ± 0.11 mm, 2.03 ± 0.07 N, 95.31 ± 0.15 % and 1616 J/g respectively. In the heat treatment test, the hardness change is reduced to 1.85 N, and the swelling capacity is 0 % to 92.63%. In the in vitro simulation test, the experimental results show that in the simulated stomach, the release of the release amount of self-emulsified isoflavone hydrogel bead in simulated gastric fluid (SGF) are 0.6 ~ 0.75%. It shows that the soy isoflavones is encapsulated well by hydrogel bead and have sustained release effect in stomach. In the simulated intestinal environment, the highest cumulative amounts of soy isoflavones is 87.51 %, which shows that the isoflavone self-emulsified hydrogel bead reaches high release amount in the intestine.
URI: http://hdl.handle.net/11455/98002
文章公開時間: 2018-08-29
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.